Theoretical, Numerical and Experimental Assessment of Temperature Response in Polylactic Acid and Acrylonitrile Butadiene Styrene Used in Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
Assumptions Regarding Heat Transfer in Plastic Parts Made by Additive Manufacturing
3. Results
3.1. Finite Element Modeling of Thermal Conductivity Variation
3.2. Experimental Conditions
- The nature of the test sample material. Test samples of polylactic acid (PLA) and acrylonitrile butyl styrene (ABS) with dimensions of 100 mm × 100 mm × (1 or 3) mm were printed, respectively. In Table 2, the values defining the experimental conditions and the values of an output parameter were entered. The PLA material and the ABS material were assigned symbols 1 and symbol 2, respectively. The symbol m was used for the material identified as an independent variable;
- The test sample thickness h. The two levels of this factor correspond to a thickness of 1 mm and 3 mm, respectively;
- Printing speed s. The values of this input factor were 45 mm/s and 55 mm/s, respectively. It was considered that the printing speed could affect the arrangement of the molten polymer when the layers of the future test sample were generated, and thus, the thermal conductivity of the deposited material could be affected;
- The cooling conditions provided by the 3D printer, symbolized by the letter c and expressed as a percentage, using the symbol 1 for lack of cooling and 2 for the maximum use of the cooling subsystem of the 3D printer;
- Level i of the infill, for which the values used were 22% (level 1) and 18% (level 2), respectively;
- The thickness l of the layer deposited during 3D printing is 0.06 mm and 0.15 mm, respectively. The values of the input factors that define the working conditions used for the 3D printing process were established by taking into account the recommendations for such a manufacturing process;
- The size t of the time interval at which the temperature measurement was performed.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llavona, M.A.; Zapico, R.; Blanco, F.; Verdeja, L.F.; Sancho, J.P. Methods for Measuring Thermal Conductivity. Rev. Minas 1991, 6, 89–98. [Google Scholar]
- Dai, H.; Wang, R. Methods for Measuring Thermal Conductivity of Two-Dimensional Materials: A Review. Nanomaterials 2022, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Themax Ingénierie. Measuring Thermal Conductivity. Available online: https://themacs-engineering.com/wp-content/uploads/2020/05/Thermal-conductivity.pdf (accessed on 10 January 2022).
- Dziob, D.; Čepič, M. Simple method for measuring thermal conductivity. Phys. Educ. 2020, 55, 045004. [Google Scholar] [CrossRef]
- Chen, L.; Shi, X.; Yu, N.; Zhang, X.; Du, X.; Lin, J. Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials 2018, 11, 1701. [Google Scholar] [CrossRef] [Green Version]
- Prado, J.I.; Calviño, U.; Lugo, L. Experimental Methodology to Determine Thermal Conductivity of Nanofluids by Using a Commercial Transient Hot-Wire Device. Appl. Sci. 2021, 12, 329. [Google Scholar] [CrossRef]
- Sekhu, K.S.; Singh, P. Various Methods for Measuring Thermal Conductivity—A Review. IJRDO J. Mech. Civ. Eng. 2015, 1, 17. [Google Scholar]
- Palacios, A.; Cong, L.; Navarro, M.; Ding, Y.; Barreneche, C. Thermal conductivity measurement techniques for characterizing thermal energy storage materials—A review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Srivastava, V.; Srivastava, R. Advances in Automotive Polymer Applications and Recycling. Int. J. Innov. Res. Sci. Technol. 2013, 2, 744–746. [Google Scholar]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G.; et al. 3D printing for polymer/particle-based processing: A review. Compos. Part B Eng. 2021, 223, 109102. [Google Scholar] [CrossRef]
- Kovalcik, A. Recent Advances in 3D Printing of Polyhydroxyalkanoates: A Review. EuroBiotech J. 2021, 5, 48–55. [Google Scholar] [CrossRef]
- Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]
- Little, H.A.; Tanikella, N.G.; Reich, M.J.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Towards Distributed Recycling with Additive Manufacturing of PET Flake Feedstocks. Materials 2020, 13, 4273. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, S.J.; Jagoda, J.A.; Hoisington, A.J.; Delorit, J.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments. Autom. Constr. 2021, 125, 103642. [Google Scholar] [CrossRef]
- Budzik, G.; Tomaszewski, K.; Soboń, A. Opportunities for the Application of 3D Printing in the Critical Infrastructure System. Energies 2022, 15, 1656. [Google Scholar] [CrossRef]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, S.; Sultana, T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Maalihan, R.D.; Ren, J.; da Silva, Í.G.M.; Dugos, N.P.; Caldona, E.B.; Rigoberto, C.A. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 2021, 11, 197–212. [Google Scholar] [CrossRef]
- Nejad, Z.M.; Zamanian, A.; Saeidifar, M.; Vanaei, H.R.; Amoli, M.S. 3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior. Polymers 2021, 13, 4442. [Google Scholar] [CrossRef]
- Vanaei, H.; Khelladi, S.; Deligant, M.; Shirinbayan, M.; Tcharkhtchi, A. Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication. J. Manuf. Process. 2022, 76, 548–558. [Google Scholar] [CrossRef]
- Sulong, N.H.R.; Mustapa, S.A.S.; Rashid, M.K.A. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 2019, 136, 47529. [Google Scholar] [CrossRef] [Green Version]
- Harris, M. 3D Printing Materials for Large-Scale Insulation and Support Matrices. Ph.D. Thesis, Massey University, Albany, New Zealand, 2019. Available online: http://hdl.handle.net/10179/15784 (accessed on 17 August 2021).
- Doğan, B.; Tan, H. The Numerical and Experimental Investigation of the Change of the Thermal Conductivity of Expanded Polystyrene at Different Temperatures and Densities. Int. J. Polym. Sci. 2019, 2019, 6350326. [Google Scholar] [CrossRef] [Green Version]
- Eom, R.-I.; Lee, E.; Lee, H.; Lee, Y. Evaluation of Thermal Properties of 3D Spacer Technical Materials in Cold Environments using 3D Printing Technology. Polymers 2019, 11, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabowska, B.; Kasperski, J. The Thermal Conductivity of 3D Printed Plastic Insulation Materials—The Effect of Optimizing the Regular Structure of Closures. Materials 2020, 13, 4400. [Google Scholar] [CrossRef] [PubMed]
- De Rubeis, T. 3D-Printed Blocks: Thermal Performance Analysis and Opportunities for Insulating Materials. Sustainability 2022, 14, 1077. [Google Scholar] [CrossRef]
- Elkholy, A.; Kempers, R. Investigation into the Influence of Fused Deposition Modeling (FDM) Process Parameters on the Thermal Properties of 3D-Printed Parts. In Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, Toronto, ON, Canada, 27–30 May 2018. [Google Scholar] [CrossRef] [Green Version]
- Elkholy, A.; Rouby, M.; Kempers, R. Characterization of the anisotropic thermal conductivity of additively manufactured components by fused filament fabrication. Prog. Addit. Manuf. 2019, 4, 497–515. [Google Scholar] [CrossRef]
- Flores, F.C. Thermal Insulation of Rice Hull and Waste Polystyrene Foam as a Composite Material. Available online: https://www.researchgate.net/publication/343501446_Thermal_Insulation_of_Rice_Hull_and_Waste_Polystyrene_Foam_as_a_Composite_Material (accessed on 23 January 2022).
- Mihalache, A.; Hriţuc, A.; Boca, M.; Oroian, B.; Condrea, I.; Botezatu, C.; Slătineanu, L. Thermal Insulation Capacity of a 3D Printed Material. Macromol. Symp. 2021, 396, 2000286. [Google Scholar] [CrossRef]
- Panaite, C.E.; Mihalache, A.M.; Slătineanu, L.; Popescu, A.; Nagîț, G.; Hrițuc, A.; Dodun, O. Numerical and experimental investigations of thermal conductivity of 3D printed polystyrene. Macromol. Symp. 2022, accepted. [Google Scholar]
- Trhlíková, L.; Zmeskal, O.; Psencik, P.; Florian, P. Study of the thermal properties of filaments for 3D printing. In Proceedings of the AIP Conference Proceedings, Terchova, Slovakia, 12–14 October 2016; Volume 1752, p. 040027. [Google Scholar] [CrossRef]
- Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf. Ser. Mater. Sci. Eng. 2015, 102, 012022. [Google Scholar] [CrossRef] [Green Version]
- Flaata, T.; Michna, G.J.; Letcher, T. Thermal conductivity testing apparatus for 3d printed materials. In Proceedings of the ASME 2017 Summer Heat Transfer Conference HT2017 Bellevue, Washington, DC, USA, 9–14 July 2017. [Google Scholar] [CrossRef]
- Codorníu, D.M.; Moyano, J.; Belmonte, M.; Osendi, M.; Miranzo, P. Thermal conduction in three-dimensional printed porous samples by high resolution infrared thermography. Open Ceram. 2020, 4, 100028. [Google Scholar] [CrossRef]
- SD3D. ABS Technical Data Sheet. Available online: https://www.sd3d.com/wp-content/uploads/2015/10/MaterialTDS-ABS-Web.pdf (accessed on 10 January 2022).
- Comsol. The Heat Balance Equation. Available online: https://doc.comsol.com/5.5/doc/com.comsol.help.heat/heat_ug_theory.07.05.html#586456 (accessed on 12 January 2022).
- SD3D. PLA Technical Data Sheet. Available online: https://www.sd3d.com/wp-content/uploads/2017/06/MaterialTDS-PLA_01.pdf (accessed on 10 January 2022).
- Sime, G.A. Closer Look: Techniques for Obtaining Glass Transition Temperature of Polymeric Materials. 2013. Available online: https://www.intertek.com/blog/2013-04-15-glass-transition-temperature/ (accessed on 4 March 2022).
- Pillet, M. Introduction aux Plans d’Expériences par la Méthode Taguchi; Les Éditions d’Organisation: Paris, France, 1992. [Google Scholar]
- Slătineanu, L. Fundamentals of Scientific Research; PIM Publishing House: Iași, Romania, 2019. (In Romanian) [Google Scholar]
- Crețu, G. Fundamentals of Experimental Research. In Laboratory Handbook; “Gheorghe Asachi” Technical University of Iași: Iași, Romania, 1992. (In Romanian) [Google Scholar]
Physical Property | Material | |
---|---|---|
PLA | ABS | |
Thermal conductivity [W/(m·K)] | 0.13 | 0.173 |
Density [kg/m3] | 1240 | 1040 |
Glass transition [°C] | 57 by DSC 63 by DMA | 105 by DSC 108 by DMA |
Heat deflection temperature [°C] | 49 | 96 |
Coefficient of thermal expansion [m/m·K] | 41 × 10−6 | 72 × 10−6 |
Heat capacity [J/kg·K] | 1800 | 1670 |
Experiment No. | Input Factors (Coded Value/Real Value) | Output Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 Test Sample Material, m(PLA/ABS) | 2 Test Sample Thickness, h, mm | 3 Printing Speed, s, mm/s | 4 Cooling, c, % | 5 Infill, i, % | 6 Deposited Layer Thickness, l, mm | 7 Time, t, min | Real Value, Δθ, after 120 s | According to the Polynomial of First-Order Empirical Model | According to the Power Type Empirical Model | |
Column No. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1/PLA | 1/1 | 1/45 | 1/0 | 1/22 | 1/0.06 | 1/0 | 36 | 35.98 | 38.5 |
2 | 1/PLA | 1/1 | 1/45 | 2/100 | 2/18 | 2/0.15 | 2/120 | 31 | 30.97 | 31.3 |
3 | 1/PLA | 2/3 | 2/55 | 1/0 | 1/22 | 2/0.15 | 2/120 | 22 | 21.97 | 22.5 |
4 | 1/PLA | 2/3 | 2/55 | 2/100 | 2/18 | 1/0.06 | 1/0 | 25 | 24.99 | 24.4 |
5 | 2/ABS | 1/1 | 2/55 | 1/0 | 2/18 | 1/0.06 | 2/120 | 38 | 37.97 | 38.8 |
6 | 2/ABS | 1/1 | 2/55 | 2/100 | 1/22 | 2/0.15 | 1/0 | 25 | 24.98 | 24.3 |
7 | 2/ABS | 2/3 | 1/45 | 1/0 | 2/18 | 2/0.15 | 1/0 | 11 | 10.99 | 10.8 |
8 | 2/ABS | 2/3 | 1/45 | 2/100 | 1/22 | 1/0.06 | 2/120 | 24 | 23.97 | 24.2 |
Exp. No. | Time, t, s | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 60 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | 540 | 600 | 660 | |
1 | 23 | −8 | −13 | −15 | −16 | −17 | −15 | −13 | ||||
2 | 23 | −5 | −8 | −12 | −12 | −9 | −5 | −5 | ||||
3 | 23 | 4 | 1 | 0 | −3 | −3 | −8 | −7 | −6 | −5 | ||
4 | 23 | 5 | −2 | −5 | −6 | −7 | −8 | −9 | −9 | −8 | −8 | −8 |
5 | 23 | −15 | −15 | −14 | −11 | −11 | −11 | −11 | ||||
6 | 23 | 5 | −2 | −4 | −5 | −5 | −5 | −3 | −2 | |||
7 | 23 | 17 | 12 | 8 | 5 | 3 | 2 | 0 | −1 | 0 | 1 | |
8 | 23 | 3 | −1 | −6 | −8 | −6 | −5 | −8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panaite, C.E.; Mihalache, A.-M.; Dodun, O.; Slătineanu, L.; Popescu, A.; Hrițuc, A.; Nagîț, G. Theoretical, Numerical and Experimental Assessment of Temperature Response in Polylactic Acid and Acrylonitrile Butadiene Styrene Used in Additive Manufacturing. Polymers 2022, 14, 1714. https://doi.org/10.3390/polym14091714
Panaite CE, Mihalache A-M, Dodun O, Slătineanu L, Popescu A, Hrițuc A, Nagîț G. Theoretical, Numerical and Experimental Assessment of Temperature Response in Polylactic Acid and Acrylonitrile Butadiene Styrene Used in Additive Manufacturing. Polymers. 2022; 14(9):1714. https://doi.org/10.3390/polym14091714
Chicago/Turabian StylePanaite, Camen Ema, Andrei-Marius Mihalache, Oana Dodun, Laurențiu Slătineanu, Aristotel Popescu, Adelina Hrițuc, and Gheorghe Nagîț. 2022. "Theoretical, Numerical and Experimental Assessment of Temperature Response in Polylactic Acid and Acrylonitrile Butadiene Styrene Used in Additive Manufacturing" Polymers 14, no. 9: 1714. https://doi.org/10.3390/polym14091714
APA StylePanaite, C. E., Mihalache, A.-M., Dodun, O., Slătineanu, L., Popescu, A., Hrițuc, A., & Nagîț, G. (2022). Theoretical, Numerical and Experimental Assessment of Temperature Response in Polylactic Acid and Acrylonitrile Butadiene Styrene Used in Additive Manufacturing. Polymers, 14(9), 1714. https://doi.org/10.3390/polym14091714