Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Tensile Properties
2.4. Scanning Electron Microscopy (SEM)
2.5. Differential Scanning Calorimetry (DSC)
2.6. Vicat Softening Temperature (VST)
2.7. Fourier-Transform Infrared Spectroscopy (FTIR)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Reaction Mechanism
3.2. Mechanical Properties
3.3. Morphology
3.4. Thermal Properties
3.5. Vicat Softening Temperature (VST)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jantanasakulwong, K.; Rohindra, D.; Mori, K.; Kuboyama, K.; Ougizawa, T. Thermoplastic elastomer by reactive blending of poly(butylene succinate) with ethylene-propylene-diene terpolymer and ethylene-1-butene rubbers. J. Elastomers Plast. 2015, 47, 215–231. [Google Scholar] [CrossRef]
- Jantanasakulwong, K.; Kobayashi, Y.; Kuboyama, K.; Ougizawa, T. Thermoplastic vulcanizate based on poly(lactic acid) and acrylic rubber blended with ethylene ionomer. J. Macromol. Sci. Phys. Part B 2016, 55, 1068–1085. [Google Scholar] [CrossRef]
- Surin, S.; You, S.; Seesuriyachan, P.; Muangrat, R.; Wangtueai, S.; Jambrak, A.R.; Phongthai, S.; Jantanasakulwong, K.; Chaiyaso, T.; Phimolsiripol, Y. Optimization of ultrasonic-assisted extraction of polysaccharides from purple glutinous rice bran (Oryza sativa L.) and their antioxidant activities. Sci. Rep. 2020, 10, 10410. [Google Scholar] [CrossRef] [PubMed]
- Suriyatem, R.; Noikang, N.; Kankam, T.; Jantanasakulwong, K.; Leksawasdi, N.; Phimolsiripol, Y.; Insomphun, C.; Seesuriyachan, P.; Chaiyaso, T.; Jantrawut, P.; et al. Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: Effect of delignification with hydrogen peroxide. Polymers 2020, 12, 1505. [Google Scholar] [CrossRef]
- Tantala, J.; Rachtanapun, C.; Tongdeesoontorn, W.; Jantanasakulwong, K.; Rachtanapun, P. Moisture sorption isotherms and prediction models of carboxymethyl chitosan films from different sources with various plasticizers. Adv. Mater. Sci. Eng. 2019, 2019, 4082439. [Google Scholar] [CrossRef] [Green Version]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R.; et al. Synthesis, characterization, and application of carboxymethyl cellulose from asparagus stalk end. Polymers 2021, 13, 81. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Leksawasdi, N.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Effect of monochloroacetic acid on properties of carboxymethyl bacterial cellulose powder and film from nata de coco. Polymers 2021, 13, 488. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Characterization of chitosan film incorporated with curcumin extract. Polymers 2021, 13, 963. [Google Scholar] [CrossRef]
- Chaiwong, N.; Leelapornpisid, P.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sakdatorn, V.; Leksawasdi, N.; Phimolsiripol, Y. Antioxidant and moisturizing properties of carboxymethyl chitosan with different molecular weights. Polymers 2020, 12, 1445. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Homsaard, N.; Kodsangma, A.; Leksawasdi, N.; Phimolsiripol, Y.; Phongthai, S.; Khemcheewakul, J.; Seesuriyachan, P.; Chaiyaso, T.; Chotinan, S.; et al. Effect of egg-coating material properties by blending cassava starch with methyl cellulose and waxes on egg quality. Polymers 2021, 13, 3787. [Google Scholar] [CrossRef]
- Leksawasdi, N.; Chaiyaso, T.; Rachtanapun, P.; Thanakkasaranee, S.; Jantrawut, P.; Ruksiriwanich, W.; Seesuriyachan, P.; Phimolsiripol, Y.; Techapun, C.; Sommano, S.R.; et al. Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent. Sci. Rep. 2021, 11, 19250. [Google Scholar] [CrossRef] [PubMed]
- Homsaard, N.; Kodsangma, A.; Jantrawut, P.; Rachtanapun, P.; Leksawasdi, N.; Phimolsiripol, Y.; Seesuriyachan, P.; Chaiyaso, T.; Sommano, S.R.; Rohindra, D.; et al. Efficacy of cassava starch blending with gelling agents and palm oil coating in improving egg shelf life. Int. J. Food. Sci. Technol. 2021, 56, 3655–3661. [Google Scholar] [CrossRef]
- Jantanasakulwong, K.; Homsaard, N.; Phengchan, P.; Rachtanapun, P.; Leksawasdi, N.; Phimolsiripol, Y.; Techapun, C.; Jantrawut, P. Effect of dip coating polymer solutions on properties of thermoplastic cassava starch. Polymers 2019, 11, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiyaso, T.; Rachtanapun, P.; Thajai, N.; Kiattipornpithak, K.; Jantrawut, P.; Ruksiriwanich, W.; Seesuriyachan, P.; Leksawasdi, N.; Phimolsiripol, Y.; Techapun, C.; et al. Sericin cocoon bio-compatibilizer for reactive blending of thermoplastic cassava starch. Sci. Rep. 2021, 11, 19945. [Google Scholar] [CrossRef]
- Jantanasakulwong, K.; Wongsuriyasak, S.; Rachtanapun, P.; Seesuriyachan, P.; Chaiyaso, T.; Leksawasdi, N.; Techapun, C. Mechanical properties improvement of thermoplastic corn starch and polyethylene-grafted-maleicanhydride blending by Na+ ions neutralization of carboxymethyl cellulose. Int. J. Biol. 2018, 120, 297–301. [Google Scholar] [CrossRef]
- Kaewsalud, T.; Yakul, K.; Jantanasakulwong, K.; Tapingkae, W.; Watanabe, M.; Chaiyaso, T. Biochemical Characterization and Application of Thermostable-Alkaline Keratinase From Bacillus halodurans SW-X to Valorize Chicken Feather Wastes. Waste Biomass Valorization 2021, 12, 3951–3964. [Google Scholar] [CrossRef]
- Chaiwarit, T.; Masavang, S.; Mahe, J.; Sommano, S.; Ruksiriwanich, W.; Brachais, C.H.; Chambin, O.; Jantrawut, P. Mango (cv. Nam Dokmai) peel as a source of pectin and its potential use as a film-forming polymer. Food Hydrocoll. 2020, 102, 105611. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Han, W.; Zhang, C.; Weng, Y. Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing. Polym. Degrad. Stab. 2021, 183, 109455. [Google Scholar] [CrossRef]
- Mihai, I.; Hassouna, F.; Fouquet, T.; Laachachi, A.; Raquez, J.-M.; El Ahrach, H.I.; Dubois, P. Reactive plasticization of poly(lactide) with epoxy functionalized cardanol. Polym. Eng. Sci. 2018, 58 (Suppl. S1), E64–E72. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Weng, Y.-X.; Huang, Z.-G.; Wang, L.; Qiu, D.; Shao, S.-X. In Effect of epoxy chain extender on the properties of polylactic acid. J. Appl. Mater. Sci. Eng. Res. 2019, 2, 1–7. [Google Scholar]
- Garcia-Garcia, D.; Carbonell-Verdu, A.; Arrieta, M.P.; López-Martínez, J.; Samper, M.D. Improvement of PLA film ductility by plasticization with epoxidized karanja oil. Polym. Degrad. Stab. 2020, 179, 109259. [Google Scholar] [CrossRef]
- Yu, X.; Wang, X.; Zhang, Z.; Peng, S.; Chen, H.; Zhao, X. High-performance fully bio-based poly(lactic acid)/ polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy. Polym. Test. 2019, 78, 105980. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, X.; Zhang, M.; Jin, L.; Liu, L.; Xiao, L.; Li, M.; Ao, Y. A highly active bio-based epoxy resin with multi-functional group: Synthesis, characterization, curing and properties. J. Mater. Sci. 2018, 53, 5402–5417. [Google Scholar] [CrossRef]
- Kiattipornpithak, K.; Thajai, N.; Kanthiya, T.; Rachtanapun, P.; Phimolsiripol, Y.; Rohindra, D.; Ruksiriwanich, W.; Leksawasdi, S.R.; Jantanasakulwong, K. Reaction mechanism and mechanical property improvement of poly(lactic acid) reactive blending with epoxy resin. Polymers 2021, 13, 2429. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.; Xu, C. Super toughened biobased poly(lactic acid)/epoxidized natural rubber thermoplastic vulcanizates: Fabrication, co-continuous phase structure, interfacial in-situ compatibilization and toughening mechanism. J. Phys. Chem. B 2015, 119, 12138–12146. [Google Scholar] [CrossRef]
- Svoboda, P.; Svobodova, D.; Mokrejs, P.; Vasek, V.; Jantanasakulwong, K.; Ougizawa, T.; Inoue, T. Electron beam crosslinking of ethylene-octene copolymers. Polymer 2015, 81, 119–128. [Google Scholar] [CrossRef]
- Kodsangma, A.; Homsaard, N.; Nadon, S.; Rachtanapun, P.; Leksawasdi, N.; Yuthana, P.; Insomphun, C.; Seesuriyachan, P.; Chaiyaso, T.; Jantrawut, P.; et al. Effect of sodium benzoate and chlorhexidine gluconate on a biothermoplastic elastomer made from thermoplastic starch-chitosan blended with epoxidized natural rubber. Carbohydr. Polym. 2020, 242, 116421. [Google Scholar] [CrossRef]
- Klinkajorn, J.; Tanrattanakul, V. The effect of epoxide content on compatibility of poly(lactic acid)/epoxidized natural rubber blends. J. Appl. Polym. Sci. 2020, 137, 48996. [Google Scholar] [CrossRef]
- Sathornluck, S.; Choochottiros, C. Modification of epoxidized natural rubber as a PLA toughening agent. J. Appl. Polym. Sci. 2019, 136, 48267. [Google Scholar] [CrossRef]
- Torres-Hernandez, Y.G.; Ortega-Diaz, G.M.; Tellez-Jurado, L.; Castrejon-Jimenez, N.S.; Altamirano-Torres, A.; Garcia-Jimenez, B.E.; Balmori-Ramirez, H. Biological compatibility of a polylactic acid composite reinforced with natural chitosan obtained from shrimp waste. Materials 2018, 11, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, P.K.; Yang, J.M.; Chang, Y.H. Water-induced shape memory behavior of poly (vinyl alcohol) and p-coumaric acid-modified water-soluble chitosan blended membrane. Carbohydr. Polym. 2021, 257, 117633. [Google Scholar] [CrossRef] [PubMed]
- Jantanasakulwong, K.; Leksawasdi, N.; Seesuriyachan, P.; Wongsuriyasak, S.; Techapun, C.; Ougizawa, T. Reactive blending of thermoplastic starch, epoxidized natural rubber and chitosan. Eur. Polym. J. 2016, 84, 292–299. [Google Scholar] [CrossRef]
- Paiva, D.; Ivanova, G.; Do Carmo Pereira, M.; Rocha, S. Chitosan conjugates for DNA delivery. Phys. Chem. Chem. Phys. 2013, 15, 11893. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.M.F.; Soares, B.G. Epoxidized cardanol-based prepolymer as promising biobased compatibilizing agent for PLA/PBAT blends. Polym. Test. 2021, 93, 106889. [Google Scholar] [CrossRef]
- Srihep, Y.; Nealey, P.; Turng, L.-S. Effeacts of annealing time and temperature on the crystallinity and heat resistance behavior of injection-moled poly(lactic acid). Polym. Eng. Sci. 2013, 53, 580–588. [Google Scholar] [CrossRef]
- Jai, S.; Yu, D.; Zhu, Y.; Wang, Z.; Chen, L.; Fu, L. Morphology, crystallization and thermal behaviors of PLA-based composite: Wonderful effects of hybrid GO/PEG via Dynamic impregnating. Polymers 2017, 9, 528. [Google Scholar]
- Chieng, B.W.; Ibrahim, N.A.; Yanus, W.M.Z.W.; Hussein, M.Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2014, 6, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Mofokeng, J.P.; Luyt, A.S.; Tabi, T.; Kovacs, J. Comparison of injection moulded composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2011, 25, 927–948. [Google Scholar] [CrossRef]
- Abdollahi, H.; Salimi, A.; Barikani, M.; Samadi, A.; Red, S.H.; Zanjanijam, A.R. Systematic investigation of mechanical properties and fracture toughness of epoxy networks: Role of the polyetheramine structural parameters. J. Appl. Polym. Sci. 2018, 136, 47121. [Google Scholar] [CrossRef]
- Maity, P.; Kasisomayajula, S.V.; Parameswaran, V.; Basu, S.; Gupta, N. Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 63–72. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, A.O. Does the use of chitosan contribute to oxalate kidney stone formation. Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Cosme, J.G.I.; Silva, V.M.; Nunes, R.R.C.; Picciani, P.H.S. Development of biobased poly(lactic acid)/epoxidized natural rubber blends processed by electrospinning: Morphological, structural and thermal properties. Mater. Sci. Appl. 2016, 7, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Argüelles-Monal, Q.M.; Lizardi-Mendoza, J.; Fernández-Quiroz, D.; Recillas-Mota, M.T.; Montiel-Herrera, M. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Riyajan, S.-A.; Sukhlaaied, W. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form. Mater. Sci. Eng. C 2012, 33, 1041–1047. [Google Scholar] [CrossRef]
- Gong, X.; Pan, L.; Tang, C.Y.; Chen, L.; Li, C.; Wu, C.; Law, W.-C.; Wang, X.; Tsui, C.P.; Xie, X. Investigating the crystallization behavior of poly(lactic acid) using CdSe/ZnS quantum dots as heterogeneous nucleating agents. Compos. B Eng. 2016, 91, 103–110. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, G.; Siligardi, C.; Ori, G.; Lazzeri, A. Comparison of precipitated calcium carbonate/polylactic acid and halloysite/polylactic acid nanocomposite. J. Nanomater. 2015, 905210. [Google Scholar] [CrossRef] [Green Version]
- Lui, Y.; Jiang, S.; Yan, W.; He, M.; Qin, J.; Qin, S.; Yu, J. Crystallization morphology regulation on enhancing heat resistance of polylactic acid. Polymers 2020, 12, 1563. [Google Scholar]
- Li, P.; Zhu, X.; Kong, M.; Lv, Y.; Huang, Y.; Yang, Q.; Li, G. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. Int. J. Biol. Macromol. 2021, 183, 222–234. [Google Scholar] [CrossRef]
Sample | Composition (wt/wt%) | ||
---|---|---|---|
PLA/Epoxy Resin | CTS | ENR | |
PLAE/ENR | 80 | - | 20 |
PLAEC1/ENR | 79 | 1 | 20 |
PLAEC5/ENR | 75 | 5 | 20 |
PLAEC10/ENR | 70 | 10 | 20 |
PLAEC20/ENR | 60 | 20 | 20 |
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
PLAE/ENR | 13.6 ± 0.6 a | 2.4 ± 0.1 a | 895.64 ± 11.3 b |
PLAEC1/ENR | 30.0 ± 0.2 c | 6.0 ± 0.2 d | 1088.26 ± 5.9 a |
PLAEC5/ENR | 20.8 ± 0.8 b | 3.8 ± 0.1 c | 620.30 ± 10.3 e |
PLAEC10/ENR | 20.2 ± 0.3 b | 3.3 ± 0.1 b | 820.27 ± 2.4 c |
PLAEC20/ENR | 16.6 ± 0.5 a | 3.3 ± 0.1 b | 664.82 ± 1.5 d |
No annealing | 29.9 ± 0.2 a | 6.0 ± 0.1 b | 1187.63 ± 2.3 a |
5 min | 30.1 ± 0.1 a | 7.3 ± 0.1 a | 892.22 ± 1.9 b |
15 min | 28.9 ± 0.2 b | 5.1 ± 0.1 c | 892.01 ± 1.5 b |
30 min | 14.7 ± 0.1 d | 4.6 ± 0.2 d | 785.48 ± 1.1 e |
60 min | 17.3 ± 0.5 e | 2.9 ± 0.2 e | 864.09 ± 6.7 c |
120 min | 12.9 ± 0.1 f | 2.7 ± 0.1 f | 379.08 ± 1.5 f |
Sample | Tg (°C) | Tm (°C) | ΔHm (J/g) | ΔHc (J/g) | Xc (%) |
---|---|---|---|---|---|
PLA | 60 | 167 | 4.9 | 6.1 | 1.3 |
PLAE/ENR | 51 | 162 | 35.1 | 32.3 | 2.9 |
PLAEC1/ENR | 51 | 161 | 31.3 | 25.9 | 5.1 |
PLAEC5/ENR | 52 | 161 | 30.1 | 28.9 | 1.4 |
PLAEC10/ENR | 51 | 161 | 31.7 | 30.3 | 1.9 |
PLAEC20/ENR | 52 | 162 | 29.0 | 28.8 | 2.2 |
PLAEC1/ENR 0 min | 51 | 161 | 32.8 | 28.1 | 4.9 |
PLAEC1/ENR 5 min | 51 | 164 | 27.7 | 16.9 | 11.5 |
PLAEC1/ENR 15 min | 51 | 162 | 37.0 | 6.3 | 31.9 |
PLAEC1/ENR 30 min | 51 | 162 | 30.5 | 2.4 | 30.1 |
PLAEC1/ENR 60 min | 51 | 161 | 36.6 | 3.6 | 35.3 |
PLAEC1/ENR 120 min | 51 | 161 | 38.2 | 3.9 | 36.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanthiya, T.; Kiattipornpithak, K.; Thajai, N.; Phimolsiripol, Y.; Rachtanapun, P.; Thanakkasaranee, S.; Leksawasdi, N.; Tanadchangsaeng, N.; Sawangrat, C.; Wattanachai, P.; et al. Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time. Polymers 2022, 14, 1085. https://doi.org/10.3390/polym14061085
Kanthiya T, Kiattipornpithak K, Thajai N, Phimolsiripol Y, Rachtanapun P, Thanakkasaranee S, Leksawasdi N, Tanadchangsaeng N, Sawangrat C, Wattanachai P, et al. Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time. Polymers. 2022; 14(6):1085. https://doi.org/10.3390/polym14061085
Chicago/Turabian StyleKanthiya, Thidarat, Krittameth Kiattipornpithak, Nanthicha Thajai, Yuthana Phimolsiripol, Pornchai Rachtanapun, Sarinthip Thanakkasaranee, Noppol Leksawasdi, Nuttapol Tanadchangsaeng, Choncharoen Sawangrat, Pitiwat Wattanachai, and et al. 2022. "Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time" Polymers 14, no. 6: 1085. https://doi.org/10.3390/polym14061085
APA StyleKanthiya, T., Kiattipornpithak, K., Thajai, N., Phimolsiripol, Y., Rachtanapun, P., Thanakkasaranee, S., Leksawasdi, N., Tanadchangsaeng, N., Sawangrat, C., Wattanachai, P., & Jantanasakulwong, K. (2022). Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time. Polymers, 14(6), 1085. https://doi.org/10.3390/polym14061085