Design and Study of a Photo-Switchable Polymeric System in the Presence of ZnS Nanoparticles under the Influence of UV Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement
2.2. Preparation of ZnS Nanoparticles
2.3. Synthesis and Characterization of the Block Copolymer
2.4. Synthesis and Characterization of 1-(2-Hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran as Photochromic Component
2.5. Photoactive Copolymer with SP Photochromic Compound Grafted to the Lateral Chain
2.6. Measurement by UV-Visible Spectrophotometry
2.7. Characterization of SP by UV-Visible Spectrophotometry
2.8. Photoactive PS-b-PMMA-SP Functionalized with ZnS NPs
3. Results and Discussions
3.1. Chemical and Morphological Characterization
3.2. Optical Pproperties: UV-Vis Spectrophotometry
3.3. Fluorescence Studies: PL Spectroscopy
3.4. Characterization by Optical Fluorescence Microscope
3.5. Band Gap Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K.; Lu, Z.-H.; Zhao, P.; Kang, S.-X.; Yang, Y.-Y.; Yu, D.-G. Modified Tri–Axial Electrospun Functional Core–Shell Nanofibrous Membranes for Natural Photodegradation of Antibiotics. Chem. Eng. J. 2021, 425, 131455. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Song, W.-L.; Yu, D.-G.; Bligh, S.W. Electrospun Janus Beads-On-A-String Structures for Different Types of Controlled Release Profiles of Double Drugs. Biomolecules 2021, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wang, M.; Zhou, Y.; Sun, M.; Xie, Y.; Yu, D.-G. Comparisons of Antibacterial Performances between Electrospun Polymer@drug Nanohybrids with Drug-Polymer Nanocomposites. Adv. Compos. Hybrid. Mater. 2022, 1–13. [Google Scholar] [CrossRef]
- Hou, J.; Yang, Y.; Yu, D.-G.; Chen, Z.; Wang, K.; Liu, Y.; Williams, G.R. Multifunctional Fabrics Finished Using Electrosprayed Hybrid Janus Particles Containing Nanocatalysts. Chem. Eng. J. 2021, 411, 128474. [Google Scholar] [CrossRef]
- Kooti, M.; Gharineh, S.; Mehrkhah, M.; Shaker, A.; Motamedi, H. Preparation and Antibacterial Activity of CoFe2O4/SiO2/Ag Composite Impregnated with Streptomycin. Chem. Eng. J. 2015, 259, 34–42. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; El-Aziz, E.A.; Elmaaty, T.M.A.; Ramadan, S.M. Loading of Chitosan—Nano Metal Oxide Hybrids onto Cotton/Polyester Fabrics to Impart Permanent and Effective Multifunctions. Int. J. Biol. Macromol. 2017, 105, 769–776. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, H.; Qin, Z.; Yin, S.; Tian, L.; Liu, Z. Bioinspired Photocatalytic ZnO/Au Nanopillar-Modified Surface for Enhanced Antibacterial and Antiadhesive Property. Chem. Eng. J. 2020, 398, 125575. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Robust Superhydrophobicity of Hierarchical ZnO Hollow Microspheres Fabricated by Two-Step Self-Assembly. Nano Res. 2013, 6, 726–735. [Google Scholar] [CrossRef]
- Nayak, D.; Choudhary, R.B. Augmented Optical and Electrical Properties of PMMA-ZnS Nanocomposites as Emissive Layer for OLED Applications. Opt. Mater. 2019, 91, 470–481. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.; Han, Y.; Xu, H.; Wang, Y.; Qi, D.; Wang, W. A Simple and Universal Strategy to Deposit Ag/Polypyrrole on Various Substrates for Enhanced Interfacial Solar Evaporation and Antibacterial Activity. Chem. Eng. J. 2020, 384, 123379. [Google Scholar] [CrossRef]
- Shuai, C.; Guo, W.; Wu, P.; Yang, W.; Hu, S.; Xia, Y.; Feng, P. A Graphene Oxide-Ag Co-Dispersing Nanosystem: Dual Synergistic Effects on Antibacterial Activities and Mechanical Properties of Polymer Scaffolds. Chem. Eng. J. 2018, 347, 322–333. [Google Scholar] [CrossRef]
- Liu, C.; Shan, H.; Chen, X.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Novel Inorganic-Based N-Halamine Nanofibrous Membranes as Highly Effective Antibacterial Agent for Water Disinfection. ACS Appl. Mater. Interfaces 2018, 10, 44209–44215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ge, M.; Dong, J.; Huang, J.; He, J.; Lai, Y. Polydopamine-Inspired Design and Synthesis of Visible-Light-Driven Ag NPs@C@elongated TiO2 NTs Core–Shell Nanocomposites for Sustainable Hydrogen Generation. ACS Sustain. Chem. Eng. 2019, 7, 558–568. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, S.; Lai, Y.; Liu, H.; Fan, Y.; Liu, C.; Wang, H.; Chai, L. In-Situ Synthesis of Monodispersed CuxO Heterostructure on Porous Carbon Monolith for Exceptional Removal of Gaseous Hg0. Appl. Catal. B Environ. 2020, 265, 118556. [Google Scholar] [CrossRef]
- Dong, J.; Huang, J.; Wang, A.; Biesold-McGee, G.V.; Zhang, X.; Gao, S.; Wang, S.; Lai, Y.; Lin, Z. Vertically-Aligned Pt-Decorated MoS2 Nanosheets Coated on TiO2 Nanotube Arrays Enable High-Efficiency Solar-Light Energy Utilization for Photocatalysis and Self-Cleaning SERS Devices. Nano Energy 2020, 71, 104579. [Google Scholar] [CrossRef]
- Wang, S.; Cai, J.; Mao, J.; Li, S.; Shen, J.; Gao, S.; Huang, J.; Wang, X.; Parkin, I.P.; Lai, Y. Defective Black Ti3+ Self-Doped TiO2 and Reduced Graphene Oxide Composite Nanoparticles for Boosting Visible-Light Driven Photocatalytic and Photoelectrochemical Activity. Appl. Surf. Sci. 2019, 467–468, 45–55. [Google Scholar] [CrossRef]
- Huang, J.; Shen, J.; Li, S.; Cai, J.; Wang, S.; Lu, Y.; He, J.; Carmalt, C.J.; Parkin, I.P.; Lai, Y. TiO2 Nanotube Arrays Decorated with Au and Bi2S3 Nanoparticles for Efficient Fe3+ Ions Detection and Dye Photocatalytic Degradation. J. Mater. Sci. Technol. 2020, 39, 28–38. [Google Scholar] [CrossRef]
- Cai, J.; Shen, F.; Shi, Z.; Lai, Y.; Sun, J. Nanostructured TiO2 for Light-Driven CO2 Conversion into Solar Fuels. APL Mater. 2020, 8, 040914. [Google Scholar] [CrossRef]
- Wu, Z.; Li, L.; Liao, T.; Chen, X.; Jiang, W.; Luo, W.; Yang, J.; Sun, Z. Janus Nanoarchitectures: From Structural Design to Catalytic Applications. Nano Today 2018, 22, 62–82. [Google Scholar] [CrossRef]
- Cai, J.; Shen, J.; Zhang, X.; Ng, Y.H.; Huang, J.; Guo, W.; Lin, C.; Lai, Y. Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review. Small Methods 2019, 3, 1800184. [Google Scholar] [CrossRef]
- Miao, D.; Huang, Z.; Wang, X.; Yu, J.; Ding, B. Continuous, Spontaneous, and Directional Water Transport in the Trilayered Fibrous Membranes for Functional Moisture Wicking Textiles. Small 2018, 14, 1801527. [Google Scholar] [CrossRef]
- Liu, L.-X.; Chen, W.; Zhang, H.-B.; Wang, Q.-W.; Guan, F.; Yu, Z.-Z. Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197. [Google Scholar] [CrossRef]
- Lee, E.-J.; Deka, B.J.; An, A.K. Reinforced Superhydrophobic Membrane Coated with Aerogel-Assisted Polymeric Microspheres for Membrane Distillation. J. Membr. Sci. 2019, 573, 570–578. [Google Scholar] [CrossRef]
- Deka, B.J.; Lee, E.-J.; Guo, J.; Kharraz, J.; An, A.K. Electrospun Nanofiber Membranes Incorporating PDMS-Aerogel Superhydrophobic Coating with Enhanced Flux and Improved Antiwettability in Membrane Distillation. Environ. Sci. Technol. 2019, 53, 4948–4958. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Kharraz, J.A.; Choi, P.J.; Guo, J.; Deka, B.J.; An, A.K. Superhydrophobic Membrane by Hierarchically Structured PDMS-POSS Electrospray Coating with Cauliflower-Shaped Beads for Enhanced MD Performance. J. Membr. Sci. 2020, 597, 117638. [Google Scholar] [CrossRef]
- Gustafsson, L.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces. Adv. Mater. 2018, 30, 1704325. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Ren, Z.; Liu, W. Fabrication of UV-Resistant and Superhydrophobic Surface on Cotton Fabric by Functionalized Polyethyleneimine/SiO2 via Layer-by-Layer Assembly and Dip-Coating. Cellulose 2019, 26, 8951–8962. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B. Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation. ACS Appl. Mater. Interfaces 2013, 5, 7208–7214. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, T.; Li, S.; Huang, J.; Mao, J.; Yang, H.; Gao, S.; Chen, Z.; Lai, Y. A Novel Strategy for Fabricating Robust Superhydrophobic Fabrics by Environmentally-Friendly Enzyme Etching. Chem. Eng. J. 2019, 355, 290–298. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; Abdel-Aziz, M.S. Effect of Plasma Superficial Treatments on Antibacterial Functionalization and Coloration of Cellulosic Fabrics. Appl. Surf. Sci. 2017, 392, 1126–1133. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.S.; Eid, B.M.; Ibrahim, N.A. Biosynthesized Silver Nanoparticles for Antibacterial Treatment of Cellulosic Fabrics Using O2-Plasma. AATCC J. Res. 2014, 1, 6–12. [Google Scholar] [CrossRef]
- Kole, A.K.; Gupta, S.; Kumbhakar, P.; Ramamurthy, P.C. Nonlinear Optical Second Harmonic Generation in ZnS Quantum Dots and Observation on Optical Properties of ZnS/PMMA Nanocomposites. Opt. Commun. 2014, 313, 231–237. [Google Scholar] [CrossRef]
- Pizarro, G.d.C.; Marambio, O.G.; Jeria-Orell, M.; Oyarzún, D.P.; Sánchez, J. Hybrid Polymer Films Based ZnS Nanocomposites and Its Optical and Morphological Properties: Monitoring the Role of the Binding-Site Interaction. Mater. Res. Bull. 2018, 98, 15–24. [Google Scholar] [CrossRef]
- Hugel, T.; Holland, N.B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H.E. Single-Molecule Optomechanical Cycle. Science 2002, 296, 1103–1106. [Google Scholar] [CrossRef]
- Toriumi, A.; Herrmann, J.M.; Kawata, S. Nondestructive Readout of a Three-Dimensional Photochromic Optical Memory with a near-Infrared Differential Phase-Contrast Microscope. Opt. Lett. 1997, 22, 555–557. [Google Scholar] [CrossRef]
- Toriumi, A.; Kawata, S.; Gu, M. Reflection Confocal Microscope Readout System for Three-Dimensional Photochromic Optical Data Storage. Opt. Lett. 1998, 23, 1924–1926. [Google Scholar] [CrossRef]
- Wang, M.M.; Esener, S.C.; McCormick, F.B.; Çokgör, I.; Dvornikov, A.S.; Rentzepis, P.M. Experimental Characterization of a Two-Photon Memory. Opt. Lett. 1997, 22, 558–560. [Google Scholar] [CrossRef]
- Ustamehmetoǧlu, B. Matrix Effect on the Electrochromism of Spirochromics. Polym. Adv. Technol. 1999, 10, 164–168. [Google Scholar] [CrossRef]
- Hugel, T.; Seitz, M. The Study of Molecular Interactions by AFM Force Spectroscopy. Macromol. Rapid Commun. 2001, 22, 989–1016. [Google Scholar] [CrossRef]
- Clausen-Schaumann, H.; Seitz, M.; Krautbauer, R.; Gaub, H.E. Force Spectroscopy with Single Bio-Molecules. Curr. Opin. Chem. Biol. 2000, 4, 524–530. [Google Scholar] [CrossRef]
- Janshoff, A.; Neitzert, M.; Oberdörfer, Y.; Fuchs, H. Force Spectroscopy of Molecular Systems—Single Molecule Spectroscopy of Polymers and Biomolecules. Angew. Chem. Int. Ed. 2000, 39, 3212–3237. [Google Scholar] [CrossRef]
- Katsonis, N.; Lubomska, M.; Pollard, M.M.; Feringa, B.L.; Rudolf, P. Synthetic Light-Activated Molecular Switches and Motors on Surfaces. Prog. Surf. Sci. 2007, 82, 407–434. [Google Scholar] [CrossRef]
- Seki, T.; Ichimura, K. Thermal Isomerization Behaviors of a Spiropyran in Bilayers Immobilized with a Linear Polymer and a Smectitic Clay. Macromolecules 1990, 23, 31–35. [Google Scholar] [CrossRef]
- Saraç, A.S.; Ustamehmetoǧlu, B.; Leiminer, A.; Stephan, B.; Mannschreck, A. Electrochemical Reduction and Oxidation of Some Photochromic Compounds. Electrochim. Acta 1997, 42, 3629–3635. [Google Scholar] [CrossRef]
- Sarac, A.S.; Sezer, E.; Ustamehmetoglu, B.; Mannschreck, A.; Stephan, B. Ring Opening Process of Some Spirochromenes by Photoproduced HCl in Poly(N-Vinyl Carbazole). Polym. Adv. Technol. 1997, 8, 563–567. [Google Scholar] [CrossRef]
- Delorme, N.; Bardeau, J.-F.; Bulou, A.; Poncin-Epaillard, F. Azobenzene-Containing Monolayer with Photoswitchable Wettability. Langmuir 2005, 21, 12278–12282. [Google Scholar] [CrossRef] [PubMed]
- Furumi, S.; Ichimura, K. Effect of Para-Substituents of Azobenzene Side Chains Tethered to Poly(Methacrylate)s on Pretilt Angle Photocontrol of Nematic Liquid Crystals. Thin Solid Film. 2006, 499, 135–142. [Google Scholar] [CrossRef]
- Byrne, R.J.; Stitzel, S.E.; Diamond, D. Photo-Regenerable Surface with Potential for Optical Sensing. J. Mater. Chem. 2006, 16, 1332–1337. [Google Scholar] [CrossRef]
- Ubukata, T.; Hara, M.; Ichimura, K.; Seki, T. Phototactic Mass Transport in Polymer Films for Micropatterning and Alignment of Functional Materials. Adv. Mater. 2004, 16, 220–223. [Google Scholar] [CrossRef]
- Suzuki, T.; Kato, T.; Shinozaki, H. Photo-Reversible Pb2+-Complexation of Thermosensitive Poly(N-Isopropyl Acrylamide-Co-Spiropyran Acrylate) in Water. Chem. Commun. 2004, 2036–2037. [Google Scholar] [CrossRef]
- Suzuki, T.; Kawata, Y.; Kahata, S.; Kato, T. Photo-Reversible Pb2+-Complexation of Insoluble Poly(Spiropyran Methacrylate-Co-Perfluorohydroxy Methacrylate) in Polar Solvents. Chem. Commun. 2003, 2004–2005. [Google Scholar] [CrossRef]
- Ghavidast, A.; Mahmoodi, N.O. A Comparative Study of the Photochromic Compounds Incorporated on the Surface of Nanoparticles. J. Mol. Liq. 2016, 216, 552–564. [Google Scholar] [CrossRef]
- Uchida, K. Photochromism. Molecules and Systems. Edited by Heinz Dürr and Henri Bouas-Laurent. Angew. Chem. Int. Ed. 2004, 43, 3362. [Google Scholar] [CrossRef]
- Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and Spirooxazines for Memories and Switches. Chem. Rev. 2000, 100, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Samat, A.; Lokshin, V. Thermochromism of Organic Compounds. In Organic Photochromic and Thermochromic Compounds: Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism; Crano, J.C., Guglielmetti, R.J., Eds.; Springer: Boston, MA, USA, 2002; pp. 415–466. ISBN 978-0-306-46912-1. [Google Scholar]
- Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100, 1685–1716. [Google Scholar] [CrossRef]
- Wong, M.S.; Pan, F.; Bösch, M.; Spreiter, R.; Bosshard, C.; Günter, P.; Gramlich, V. Novel Electro-Optic Molecular Cocrystals with Ideal Chromophoric Orientation and Large Second-Order Optical Nonlinearities. J. Opt. Soc. Am. B 1998, 15, 426–431. [Google Scholar] [CrossRef]
- Evans, C.C.; Bagieu-Beucher, M.; Masse, R.; Nicoud, J.-F. Nonlinearity Enhancement by Solid-State Proton Transfer: A New Strategy for the Design of Nonlinear Optical Materials. Chem. Mater. 1998, 10, 847–854. [Google Scholar] [CrossRef]
- Meerholz, K.; De Nardin, Y.; Bittner, R.; Wortmann, R.; Würthner, F. Improved Performance of Photorefractive Polymers Based on Merocyanine Dyes in a Polar Matrix. Appl. Phys. Lett. 1998, 73, 4–6. [Google Scholar] [CrossRef]
- Nakanishi, M.; Iwasaki, T.; Maeda, S. Microencapsulated Photochromic Material, Process for Its Preparation, and Water-Base Ink Composition Prepared Therefrom. International Patent Application No. PCT/JP88/01215, 15 June 1989. [Google Scholar]
- Thieberger, G. Flat Ophthalmic Lens Synthesized from Its Specifications. U.S. Patent 6,786,595, 7 September 2004. [Google Scholar]
- Katsuhiko, H.; Chikara, A. Waveguide-Type Optical Device and Manufacturing Method Therefor. U.S. Patent US20020076161A1, 20 June 2002. [Google Scholar]
- Lecomte, S.; Gubler, U.; Jäger, M.; Bosshard, C.; Montemezzani, G.; Günter, P.; Gobbi, L.; Diederich, F. Reversible Optical Structuring of Polymer Waveguides Doped with Photochromic Molecules. Appl. Phys. Lett. 2000, 77, 921–923. [Google Scholar] [CrossRef]
- Kawata, S.; Kawata, Y. ChemInform Abstract: Three-Dimensional Optical Data Storage Using Photochromic Materials. ChemInform 2000, 31. [Google Scholar] [CrossRef]
- Dvornikov, A.S.; Rentzepis, P.M. Photochromism: Non-Linear Picosecond Kinetics and 3D Computer Memory. Mol. Cryst. Liq. Cryst. Sci. Technol. A 1994, 246, 379–388. [Google Scholar] [CrossRef]
- Pizarro, G.D.C.; Alavia, W.; Martin-Trasanco, R.; Marambio, O.G.; Sánchez, J.; Oyarzún, D.P. Preparation of Photoactive ZnS-Composite Porous Polymer Films: Fluorescent and Morphological Properties. Des. Monomers Polym. 2021, 24, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, G.d.C.; Jeria-Orell, M.; Marambio, O.G.; Olea, A.F.; Valdés, D.T.; Geckeler, K.E. Synthesis of Functional Poly(Styrene)-Block-(Methyl Methacrylate/Methacrylic Acid) by Homogeneous Reverse Atom Transfer Radical Polymerization: Spherical Nanoparticles, Thermal Behavior, Self-Aggregation, and Morphological Properties. J. Appl. Polym. Sci. 2013, 129, 2076–2085. [Google Scholar] [CrossRef]
- Yildiz, I.; Deniz, E.; Raymo, F.M. Fluorescence Modulation with Photochromic Switches in Nanostructured Constructs. Chem. Soc. Rev. 2009, 38, 1859–1867. [Google Scholar] [CrossRef]
- Krongauz, V. Photochromic Polymers. Mol. Cryst. Liq. Cryst. Sci. Technol. A 1994, 246, 339–346. [Google Scholar] [CrossRef]
- Singh, R.; Choudhary, R.B.; Kandulna, R. Optical Band Gap Tuning and Thermal Properties of PMMA-ZnO Sensitized Polymers for Efficient Exciton Generation in Solar Cell Application. Mater. Sci. Semicond. Processing 2019, 103, 104623. [Google Scholar] [CrossRef]
- Srivastava, S.; Frankamp, B.L.; Rotello, V.M. Controlled Plasmon Resonance of Gold Nanoparticles Self-Assembled with PAMAM Dendrimers. Chem. Mater. 2005, 17, 487–490. [Google Scholar] [CrossRef]
- Arandhara, G.; Bora, J.; Saikia, P.K. Effect of PH on the Crystallite Size, Elastic Properties and Morphology of Nanostructured ZnS Thin Films Prepared by Chemical Bath Deposition Technique. Mater. Chem. Phys. 2020, 241, 122277. [Google Scholar] [CrossRef]
Case | Eg (eV) | |
---|---|---|
Before Irradiation | After Irradiation | |
ZnS | 3.95 | 3.95 |
PS-b-PMMA-SP | 4.20 | 4.20 |
PS-b-PMMA-SP–ZnS | 4.10 | 3.30 |
6-nitrobenzopyran (SP) | 3.20 | 3.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, G.d.C.; Alavia, W.; González, K.; Díaz, H.; Marambio, O.G.; Martin-Trasanco, R.; Sánchez, J.; Oyarzún, D.P.; Neira-Carrillo, A. Design and Study of a Photo-Switchable Polymeric System in the Presence of ZnS Nanoparticles under the Influence of UV Light Irradiation. Polymers 2022, 14, 945. https://doi.org/10.3390/polym14050945
Pizarro GdC, Alavia W, González K, Díaz H, Marambio OG, Martin-Trasanco R, Sánchez J, Oyarzún DP, Neira-Carrillo A. Design and Study of a Photo-Switchable Polymeric System in the Presence of ZnS Nanoparticles under the Influence of UV Light Irradiation. Polymers. 2022; 14(5):945. https://doi.org/10.3390/polym14050945
Chicago/Turabian StylePizarro, Guadalupe del C., Wilson Alavia, Karen González, Héctor Díaz, Oscar G. Marambio, Rudy Martin-Trasanco, Julio Sánchez, Diego P. Oyarzún, and Andrónico Neira-Carrillo. 2022. "Design and Study of a Photo-Switchable Polymeric System in the Presence of ZnS Nanoparticles under the Influence of UV Light Irradiation" Polymers 14, no. 5: 945. https://doi.org/10.3390/polym14050945
APA StylePizarro, G. d. C., Alavia, W., González, K., Díaz, H., Marambio, O. G., Martin-Trasanco, R., Sánchez, J., Oyarzún, D. P., & Neira-Carrillo, A. (2022). Design and Study of a Photo-Switchable Polymeric System in the Presence of ZnS Nanoparticles under the Influence of UV Light Irradiation. Polymers, 14(5), 945. https://doi.org/10.3390/polym14050945