The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies
Abstract
:1. Introduction
2. Aim
3. Materials and Methods
4. Results
4.1. Flexural Strength
4.2. Impact Strength
4.3. Tensile Strength
5. Discussion
5.1. General Interpretation of the Results
5.2. Limitations
5.3. Implications
6. Conclusions
7. Other Information
Registration and Protocol
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Oliveira Limírio, J.P.J.; Gomes, J.M.L.; Alves Rezende, M.C.R.; Lemos, C.A.A.; Rosa, C.D.D.R.D.; Pellizzer, E.P. Mechanical properties of polymethyl methacrylate as a denture base: Conventional versus CAD-CAM resin—A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Carlino, F.; Claudio, P.P.; Tomeo, M.; Cortese, A. Mandibular bi-directional distraction osteogenesis: A technique to manage both transverse and sagittal mandibular diameters via a lingual tooth-borne acrylic plate and double-hinge bone anchorage. J. Craniomaxillofac. Surg. 2019, 47, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Ye, N.; Zhu, S.; Shi, B.; Li, J.; Lai, W. Comparison of the postoperative and follow-up accuracy of articulator model surgery and virtual surgical planning in skeletal class III patients. Br. J. Oral. Maxillofac. Surg. 2020, 58, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, M.; Lou, T. Clear Aligner Orthognathic Splints. J. Oral. Maxillofac. Surg. 2019, 77, 1071.e1–1071.e8. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Kämmerer, P.W.; Hennig, M.; Schön, G.; Thiem, D.G.E.; Bschorer, R. Customized virtual surgical planning in bimaxillary orthognathic surgery: A prospective randomized trial. Clin. Oral. Investig. 2019, 23, 3115–3122. [Google Scholar] [CrossRef]
- Cevik, P.; Kocacikli, M. Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: A case report. Int. J. Artif. Organs. 2020, 43, 343–347. [Google Scholar] [CrossRef]
- Lin, H.H.; Lonic, D.; Lo, L.J. 3D printing in orthognathic surgery—A literature review. J. Formos. Med. Assoc. 2018, 117, 547–558. [Google Scholar] [CrossRef]
- Wolford, L.M. Comprehensive Post Orthognathic Surgery Orthodontics: Complications, Misconceptions, and Management. Oral. Maxillofac. Surg. Clin. N. Am. 2020, 32, 135–151. [Google Scholar] [CrossRef]
- Posnick, J.C.; Kinard, B.E. Is a Final Splint Necessary in Bimaxillary Orthognathic Surgery? J. Craniofac. Surg. 2020, 31, 1756–1759. [Google Scholar] [CrossRef]
- Nik, T.H.; Gholamrezaei, E.; Keshvad, M.A. Facial asymmetry correction: From conventional orthognathic treatment to surgery-first approach. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 311–320. [Google Scholar]
- Zhang, S.H.; He, K.X.; Lin, C.J.; Liu, X.D.; Wu, L.; Chen, J.; Rausch-Fan, X. Efficacy of occlusal splints in the treatment of temporomandibular disorders: A systematic review of randomized controlled trials. Acta Odontol. Scand. 2020, 78, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Moslehifard, E.; Nikzad, S.; Geraminpanah, F.; Mahboub, F. Full-mouth rehabilitation of a patient with severely worn dentition and uneven occlusal plane: A clinical report. J. Prosthodont. 2012, 21, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, M.R.; Ghafoor, R.; Zafar, K.; Khan, F.R. Full mouth functional and aesthetic rehabilitation of a patient affected with hypoplastic type of amelogenesis imperfecta. J. Clin. Exp. Dent. 2020, 12, e310–e316. [Google Scholar] [CrossRef] [PubMed]
- Nitecka-Buchta, A.; Marek, B.; Baron, S. CGRP plasma level changes in patients with temporomandibular disorders treated with occlusal splints—A randomised clinical trial. Endokrynol. Pol. 2014, 65, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okeson, J.P. Management of Temporomandibular Disorders and Occlusion; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dawson, P.E. Evaluation, Diagnosis, and Treatment of Occlusal Problems, 15th ed.; Mosby: St. Louis, Chicago, USA, 1989. [Google Scholar]
- Okeson, J.P. The effects of hard and soft occlusal splints on nocturnal bruxism. J. Am. Dent. Assoc. 1987, 114, 788–791. [Google Scholar] [CrossRef] [PubMed]
- al-Quran, F.A.; Lyons, M.F. The immediate effect of hard and soft splints on the EMG activity of the masseter and temporalis muscles. J. Oral. Rehabil. 1999, 26, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Al-Moraissi, E.A.; Wolford, L.M.; Ellis, E., III; Neff, A. The hierarchy of different treatments for arthrogenous temporomandibular disorders: A network meta-analysis of randomized clinical trials. J. Craniomaxillofac. Surg. 2020, 48, 9–23. [Google Scholar] [CrossRef]
- Sipahi Calis, A.; Colakoglu, Z.; Gunbay, S. The use of botulinum toxin-a in the treatment of muscular temporomandibular joint disorders. J. Stomatol. Oral. Maxillofac. Surg. 2019, 120, 322–325. [Google Scholar] [CrossRef]
- Wänman, A.; Marklund, S. Treatment outcome of supervised exercise, home exercise and bite splint therapy, respectively, in patients with symptomatic disc displacement with reduction: A randomised clinical trial. J. Oral. Rehabil. 2020, 47, 143–149. [Google Scholar] [CrossRef]
- Zidan, S.; Silikas, N.; Haider, J.; Alhotan, A.; Jahantigh, J.; Yates, J. Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites. Materials 2020, 13, 2580. [Google Scholar] [CrossRef]
- Gad, M.M.; Al-Thobity, A.M. The impact of nanoparticles-modified repair resin on denture repairs: A systematic review. Jpn. Dent. Sci. Rev. 2021, 57, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Flexural Strength and Hardness of Filler-Reinforced PMMA Targeted for Denture Base Application. Materials 2021, 14, 2659. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, S.; Mandal, B.K.; Ranjan, S.; Dasgupta, N.; Chidambaram, R. Nano-zirconia—Evaluation of its antioxidant and anticancer activity. J. Photochem. Photobiol. B Biol. 2017, 170, 125–133. [Google Scholar] [CrossRef]
- Bhowmick, A.; Pramanik, N.; Jana, P.; Mitra, T.; Gnanamani, A.; Das, M.; Kundu, P.P. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int. J. Biol. Macromol. 2017, 95, 348–356. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef] [Green Version]
- Begum, S.S.; Ajay, R.; Devaki, V.; Divya, K.; Balu, K.; Kumar, P.A. Impact Strength and Dimensional Accuracy of Heat-Cure Denture Base Resin Reinforced with ZrO2 Nanoparticles: An In Vitro Study. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. S2), S365–S370. [Google Scholar]
- Ergun, G.; Sahin, Z.; Ataol, A.S. The effects of adding various ratios of zirconium oxide nanoparticles to poly(methyl methacrylate) on physical and mechanical properties. J. Oral. Sci. 2018, 60, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.M.; Abualsaud, R.; Rahoma, A.; Al-Thobity, A.M.; Akhtar, S.; Fouda, S.M. Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study. J. Prosthet. Dent. 2020, 127, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Rahoma, A.; Al-Thobity, A.M.; Al-Abidi, K.S.; Akhtar, S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int. J. Nanomed. 2018, 13, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soundarya, K.; Reddy, S.; Narendra, R.; Reddy, J.S.D.; Kumari, S.A. A Comparative Evaluation of Measuring Impact Strength of Heat Cure Acrylic Denture Base Resin With and Without Addition of Zirconia Nano-Particles—An In Vitro Study. Ann. Romanian Soc. Cell Biol. 2021, 25, 5525–5531. [Google Scholar]
- Gad, M.M.; Abualsaud, R.; Alqarawi, F.K.; Emam, A.M.; Khan, S.Q.; Akhtar, S.; Mahrous, A.A.; Al-Harbi, F.A. Translucency of nanoparticle-reinforced PMMA denture base material: An in-vitro comparative study. Dent. Mater. J. 2021, 40, 972–978. [Google Scholar] [CrossRef]
- Hamid, S.K.; Alghamdi, L.A.; Alshahrani, F.A.; Khan, S.Q.; Matin, A.; Gad, M.M. In Vitro Assessment of Artificial Aging on the Antifungal Activity of PMMA Denture Base Material Modified with ZrO2 Nanoparticles. Int. J. Dent. 2021, 2021, 5560443. [Google Scholar] [CrossRef] [PubMed]
- Aldegheishem, A.; AlDeeb, M.; Al-Ahdal, K.; Helmi, M.; Alsagob, E.I. Influence of Reinforcing Agents on the Mechanical Properties of Denture Base Resin: A Systematic Review. Polymers 2021, 13, 3083. [Google Scholar] [CrossRef]
- Awanis, J.; Awanis, J.; Anis Sofia, S.; Samat, N. Effect of Coupling Agent on Mechanical Properties of Composite from Microcrystalline Cellulose and Recycled Polypropylene. AMR 2012, 576, 390–393. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Peng, W.; Zare, Y. Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Nanoscale Res. Lett. 2018, 13, 214. [Google Scholar] [CrossRef]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Hanemann, T.; Szabó, D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials 2010, 3, 3468–3517. [Google Scholar] [CrossRef]
- Gül, E.B.; Atala, M.H.; Eşer, B.; Polat, N.T.; Asiltürk, M.; Gültek, A. Effects of coating with different ceromers on the impact strength, transverse strength and elastic modulus of polymethyl methacrylate. Dent. Mater. J. 2015, 34, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asopa, V.; Suresh, S.; Khandelwal, M.; Sharma, V.; Asopa, S.; Kaira, L. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J. Dent. Res. 2015, 6, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamadani, N.A.; f Al-Shwak, N.D. Study Mechanical and Thermal Properties of ZrO2/PMMA Nanocompsites. Diyala J. Pure Sci. 2016, 12, 1–10. [Google Scholar]
- Abd Alwahab, S.; Moosa, J.M.; Muafaq, S. Studying the Influence of Nano ZnO and Nano ZrO2 Additives on Properties of PMMA Denture Base. Indian J. Public Health Res. Dev. 2020, 11, 2047–2051. [Google Scholar] [CrossRef]
- Mohsin, Q.N.; Khaleel, A.S. Mechanical and thermal properties of poly (methyl methacrylate) supported with Zirconium oxide as a base material for dentures. AIP Conf. Proc. 2021, 2372, 080017. [Google Scholar] [CrossRef]
- Albasarah, S.; Al Abdulghani, H.; Alaseef, N.; Al-Qarni, F.D.; Akhtar, S.; Khan, S.Q.; Ateeq, I.S.; Gad, M.M. Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness. J. Adv. Prosthodont. 2021, 13, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Al-Nasrawi, S.; Haider, J.; Alshabib, A.; Alshame, A.; Yates, J. Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites. Materials 2021, 14, 3212. [Google Scholar] [CrossRef]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Assessing Fracture Toughness and Impact Strength of PMMA Reinforced with Nano-Particles and Fibre as Advanced Denture Base Materials. Materials 2021, 14, 4127. [Google Scholar] [CrossRef]
Search Strategy | |
---|---|
PubMed | (PMMA OR acrylic) AND (splint OR splints OR prosthesis OR prostheses OR denture OR dentures) AND (zirconium OR zirconia OR ZrO2) AND (nano OR nanoparticles) AND strength |
BASE | Title: (PMMA acrylic) AND (splint splints prosthesis prostheses denture dentures) AND (zirconium zirconia ZrO2) AND (nano nanoparticles) AND strength |
Google Scholar | allintitle: (PMMA OR acrylic) (splint OR splints OR prosthesis OR prostheses OR denture OR dentures) (zirconium OR zirconia OR ZrO2) (nano OR nanoparticles) strength |
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Problem | Appliances made of PMMA with nano-ZrO2 additive | Repaired appliances |
Intervention | Flexural strength and/or impact strength and/or tensile strength tests | - |
Comparison | Appliances made of PMMA without additives | - |
Outcome | Flexural strength and/or impact strength and/or tensile strength assessments | - |
Study design | In vitro studies | Non-original and/or non-English papers |
First Author, Publication Year | Nano-ZrO2 Particle Size, nm (Average) | Nano-ZrO2 Concentration, wt% | Flexural Strength | Impact Strength | Tensile Strength |
---|---|---|---|---|---|
Alhotan, 2021 [24] | <100 | 1.5 | 104% | - | - |
3.0 | 110% | - | - | ||
5.0 | 107% | - | - | ||
7.0 | 99% | - | - | ||
Begum, 2019 [31] | 30–50 | 3.0 | - | 95% | - |
5.0 | - | 82% | - | ||
7.0 | - | 51% | - | ||
Ergun, 2018 [32] | <100 | 5.0 | 73% | - | 93% |
10.0 | 52% | - | 96% | ||
20.0 | 41% | - | 87% | ||
Gad, 2020 [33] | 40 | 0.5 | 110% | - | - |
1.0 | 118% | - | - | ||
1.5 | 123% | - | - | ||
Gad, 2018 [34] | 40 | 2.5 | - | - | 123% |
5.0 | - | - | 128% | ||
7.5 | - | - | 134% | ||
Soundarya, 2021 [35] | 30–50 | 1.0 | - | 126% | - |
Zidan, 2020 [22] | 30–100 | 3.0 | 120% | - | - |
5.0 | 127% | - | - | ||
Zidan, 2019 [25] | 30–60 | 1.5 | 109% | - | - |
3.0 | 115% | - | - | ||
5.0 | 109% | - | - | ||
7.0 | 100% | - | - | ||
10.0 | 99% | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chęcińska, K.; Chęciński, M.; Sikora, M.; Nowak, Z.; Karwan, S.; Chlubek, D. The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers 2022, 14, 1047. https://doi.org/10.3390/polym14051047
Chęcińska K, Chęciński M, Sikora M, Nowak Z, Karwan S, Chlubek D. The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers. 2022; 14(5):1047. https://doi.org/10.3390/polym14051047
Chicago/Turabian StyleChęcińska, Kamila, Maciej Chęciński, Maciej Sikora, Zuzanna Nowak, Sławomir Karwan, and Dariusz Chlubek. 2022. "The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies" Polymers 14, no. 5: 1047. https://doi.org/10.3390/polym14051047
APA StyleChęcińska, K., Chęciński, M., Sikora, M., Nowak, Z., Karwan, S., & Chlubek, D. (2022). The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers, 14(5), 1047. https://doi.org/10.3390/polym14051047