Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Instrumentation
2.3. Synthesis of Materials and Composite Films
2.3.1. Synthesis and Activation of Activated Carbon
2.3.2. Synthesis of MnO2
2.3.3. Synthesis of MnO2/AC1 and MnO2/AC2
2.3.4. Synthesis of Pure CS Films
2.3.5. Synthesis of CS Hybrid Sheets
2.3.6. Stabilization of Co NPs on CS and CS Hybrid Sheets
2.4. Antibacterial Characteristics
2.5. Evaluation of Catalyst Activity in 4NP Reduction and Dye Degradation
3. Results and Discussion
3.1. FESEM and EDS
3.2. XRD
3.3. Antibacterial Activity
3.4. Catalyst Activity
3.4.1. Hydrogenation of 4NP
3.4.2. Discoloration of MO Dye
3.4.3. Discoloration of CR Dye
3.4.4. Recyclability of the Catalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.A.; Khan, S.B.; Kamal, T.; Yasir, M.; Asiri, A.M. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macromol. 2016, 91, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Chanderia, K.; Kumar, S.; Sharma, J.; Ameta, R.; Punjabi, P.B. Degradation of Sunset Yellow FCF using copper loaded bentonite and H2O2 as photo-Fenton like reagent. Arab. J. Chem. 2017, 10, S205–S211. [Google Scholar] [CrossRef]
- Kus, E.; Eroglu, H.E. Genotoxic and cytotoxic effects of Sunset Yellow and Brilliant Blue, colorant food additives, on human blood lymphocytes. Pak. J. Pharm. Sci. 2015, 28, 28. [Google Scholar]
- Ghoneim, M.M.; El-Desoky, H.S.; Zidan, N.M. Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination 2011, 274, 22–30. [Google Scholar] [CrossRef]
- Gosetti, F.; Gianotti, V.; Polati, S.; Gennaro, M.C. HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. J. Chromatogr. A 2005, 1090, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kanarek, R.B. Artificial food dyes and attention deficit hyperactivity disorder. Nutr. Rev. 2011, 69, 385–391. [Google Scholar] [CrossRef]
- Gomes, K.M.S.; Oliveira, M.V.G.A.d.; Carvalho, F.R.d.S.; Menezes, C.C.; Peron, A.P. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Sci. Technol. 2013, 33, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Rai, H.S.; Bhattacharyya, M.S.; Singh, J.; Bansal, T.; Vats, P.; Banerjee, U. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 219–238. [Google Scholar] [CrossRef]
- Liu, S.; Lai, C.; Li, B.; Zhang, C.; Zhang, M.; Huang, D.; Qin, L.; Yi, H.; Liu, X.; Huang, F. Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem. Eng. J. 2020, 384, 123304. [Google Scholar] [CrossRef]
- Sohni, S.; Khan, S.A.; Akhtar, K.; Khan, S.B.; Asiri, A.M.; Hashim, R.; Omar, A.K.M. Room temperature preparation of lignocellulosic biomass supported heterostructure (Cu+Co@OPF) as highly efficient multifunctional nanocatalyst using wetness co-impregnation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 184–195. [Google Scholar] [CrossRef]
- Erkurt, E.A.; Erkurt, H.A.; Unyayar, A. Decolorization of azo dyes by white rot fungi. In Biodegradation of Azo Dyes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 157–167. [Google Scholar]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Nanomaterials and Environmental Remediation: A Fundamental Overview; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; Volume 2, pp. 1–36. [Google Scholar]
- Aoudjit, L.; Martins, P.; Madjene, F.; Petrovykh, D.; Lanceros-Mendez, S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J. Hazard. Mater. 2018, 344, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.; Brillas, E.; Vilar, V.J. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Vilar, V.J.; Amorim, C.C.; Brillas, E.; Puma, G.L.; Malato, S.; Dionysiou, D.D. AOPs: Recent advances to overcome barriers in the treatment of water, wastewater and air. Environ. Sci. Pollut. Res. 2017, 24, 5987–5990. [Google Scholar] [CrossRef]
- Hussain, S.; Steter, J.R.; Gul, S.; Motheo, A.J. Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru0.3Ti0.7O2 anode: Mechanistic and kinetic features of the process. J. Environ. Manag. 2017, 201, 153–162. [Google Scholar] [CrossRef]
- Khan, S.A.; Mohammed, S.A.; Bakhsh, E.M.; Al-Ghamdi, Y.O.; Rauf, A.; Akhtar, K.; Begum, A.; Khan, S.B. Reduction of nitrophenol isomers and degradation of azo dyes through zero-valent Ni nanoparticles anchored on cellulose acetate coated Ce/Zr composite. J. Water Process Eng. 2021, 44, 102383. [Google Scholar] [CrossRef]
- Anwar, Y.; Mohammed Ali, H.S.; Rehman, W.U.; Hemeg, H.A.; Khan, S.A. Antibacterial Films of Alginate-CoNi-Coated Cellulose Paper Stabilized Co NPs for Dyes and Nitrophenol Degradation. Polymers 2021, 13, 4122. [Google Scholar] [CrossRef]
- Khan, S.B.; Khan, M.S.J.; Kamal, T.; Asiri, A.M.; Bakhsh, E.M. Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants. Cellulose 2020, 27, 5907–5921. [Google Scholar] [CrossRef]
- Liu, W.; Yang, X.; Huang, W. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids. J. Colloid Interface Sci. 2006, 304, 160–165. [Google Scholar] [CrossRef]
- Kuroda, K.; Ishida, T.; Haruta, M. Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J. Mol. Catal. A Chem. 2009, 298, 7–11. [Google Scholar] [CrossRef]
- Panimalar, S.; Logambal, S.; Thambidurai, R.; Inmozhi, C.; Uthrakumar, R.; Muthukumaran, A.; Rasheed, R.A.; Gatasheh, M.K.; Raja, A.; Kennedy, J. Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. Environ. Res. 2022, 205, 112560. [Google Scholar] [CrossRef] [PubMed]
- Shoba, A.; Kavitha, B.; Aswathaman, H.; Ganesan, H.; Kumar, N.S. Synthesis, characterization and electrochemical sensors application of MnO2 nanoparticles. Mater. Today Proc. 2022, 48, 521–526. [Google Scholar] [CrossRef]
- Khan, S.A.; Bakhsh, E.M.; Asiri, A.M.; Khan, S.B. Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation. J. Clean. Prod. 2021, 285, 124830. [Google Scholar] [CrossRef]
- Khan, S.A.; Baksh, E.M.; Akhtar, K.; Khan, S.B. A template of cellulose acetate polymer-ZnAl layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118671. [Google Scholar] [CrossRef]
- Ashrafizade, M.; Delfi, M.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Farahani, M.V.; Sharifzadeh, S.O.; Hamzehlou, S. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym. 2021, 260, 117809. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 2021, 7, e10254. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Kamran, M.; Khan, S.A.; Shaheen, K.; Shah, Z.; Suo, H.; Khan, Q.; Shah, A.B.; Rehman, W.U.; Al-Ghamdi, Y.O. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 2021, 168, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 66, 208. [Google Scholar]
- Kamal, T.; Khan, S.B.; Haider, S.; Alghamdi, Y.G.; Asiri, A.M. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 2017, 104, 56–62. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, G.; Zhang, J. Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage. Mater. Lett. 2016, 185, 565–568. [Google Scholar] [CrossRef]
- Tamer, T.M.; Sabet, M.M.; Omer, A.M.; Abbas, E.; Eid, A.I.; Mohy-Eldin, M.S.; Hassan, M.A. Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Sci. Rep. 2021, 11, 3428. [Google Scholar] [CrossRef] [PubMed]
- Tamer, T.M.; Alsehli, M.H.; Omer, A.M.; Afifi, T.H.; Sabet, M.M.; Mohy-Eldin, M.S.; Hassan, M.A. Development of Polyvinyl Alcohol/Kaolin Sponges Stimulated by Marjoram as Hemostatic, Antibacterial, and Antioxidant Dressings for Wound Healing Promotion. Int. J. Mol. Sci. 2021, 22, 13050. [Google Scholar] [CrossRef] [PubMed]
- Aljohny, B.O.; Ahmad, Z.; Shah, S.A.; Anwar, Y.; Khan, S.A. Cellulose acetate composite films fabricated with zero-valent iron nanoparticles and its use in the degradation of persistent organic pollutants. Appl. Organomet. Chem. 2020, 34, e5892. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L.; Khan, S.B. Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 2017, 490, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Khan, N.; Irum, U.; Farooq, A.; Asiri, A.M.; Bakhsh, E.M.; Khan, S.B. Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant. Int. J. Biol. Macromol. 2020, 153, 806–816. [Google Scholar] [CrossRef]
- Abazari, R.; Heshmatpour, F.; Balalaie, S. Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: Synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions. ACS Catal. 2013, 3, 139–149. [Google Scholar] [CrossRef]
- Khan, S.A.; Bello, B.A.; Khan, J.A.; Anwar, Y.; Mirza, M.B.; Qadri, F.; Farooq, A.; Adam, I.K.; Asiri, A.M.; Khan, S.B. Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. J. Photochem. Photobiol. B Biol. 2018, 182, 62–70. [Google Scholar] [CrossRef]
- Ni, W.; Wang, B.; Cheng, J.; Li, X.; Guan, Q.; Gu, G.; Huang, L. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale 2014, 6, 2618–2623. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.S.H.M.; Khan, S.A. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS Omega 2020, 5, 7379–7391. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Farooq, A.; Asiri, A.M. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int. J. Biol. Macromol. 2019, 130, 288–299. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Analyte | R2 | kapp | % Degradation |
---|---|---|---|---|
CS@Co | 4NP | 0.9835 | 7.01 × 10−2 | 92.62 |
CS-AC@Co | 0.9698 | 1.14 × 10−1 | 81.67 | |
CS-MnO2@Co | 0.9821 | 3.59 × 10−2 | 85.55 | |
CS-MnO2/AC1@Co | 0.9371 | 1.56 × 10−1 | 89.63 | |
CS-MnO2/AC2@Co | 0.9842 | 4.28 × 10−2 | 81.60 | |
CS@Co | CR | 0.9792 | 1.43 × 10−1 | 93.28 |
CS-AC@Co | 0.9622 | 2.25 × 10−1 | 89.49 | |
CS-MnO2@Co | 0.9171 | 1.44 × 10−1 | 93.53 | |
CS-MnO2/AC1@Co | 0.9410 | 1.33 × 10−1 | 86.31 | |
CS-MnO2/AC2@Co | 0.7940 | 6.45 × 10−2 | 83.44 | |
CS@Co | MO | 0.8543 | 1.50 × 10−2 | 71.19 |
CS-AC@Co | 0.9558 | 5.81 × 10−2 | 86.64 | |
CS-MnO2@Co | 0.9543 | 1.05 × 10−2 | 48.61 | |
CS-MnO2/AC1@Co | 0.9977 | 4.36 × 10−2 | 81.42 | |
CS-MnO2/AC2@Co | 0.9119 | 6.75 × 10−2 | 87.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Ali, H.S.H.; Sumiya; Anwar, Y.; Al-Ghamdi, Y.O.; Fakieh, M.; Khan, S.A. Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds. Polymers 2022, 14, 627. https://doi.org/10.3390/polym14030627
Mohammed Ali HSH, Sumiya, Anwar Y, Al-Ghamdi YO, Fakieh M, Khan SA. Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds. Polymers. 2022; 14(3):627. https://doi.org/10.3390/polym14030627
Chicago/Turabian StyleMohammed Ali, Hani S. H., Sumiya, Yasir Anwar, Youssef O. Al-Ghamdi, Muhammad Fakieh, and Shahid Ali Khan. 2022. "Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds" Polymers 14, no. 3: 627. https://doi.org/10.3390/polym14030627
APA StyleMohammed Ali, H. S. H., Sumiya, Anwar, Y., Al-Ghamdi, Y. O., Fakieh, M., & Khan, S. A. (2022). Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds. Polymers, 14(3), 627. https://doi.org/10.3390/polym14030627