The Reduction in the Deformation of HDPE Composites Using Self-Lubricating Fillers in an Aqueous Environment
Abstract
:1. Introduction
2. Methods and Experiments
2.1. Experimental Materials
2.2. Experimental Apparatus and Sliding Wear Tests
2.3. Measurement Techniques and Procedures
3. Experimental Results
3.1. Properties of the Modified Composites
3.2. The Frictional Coefficient Results of the Modified Composites
3.3. The Friction-Induced Vibration of the Modified Composites
3.4. The Wear Rate Behavior of the Modified Composites
3.5. The Micro-Morphologies of the Modified Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Petrů, M.; Hassan, A.; Nirmal, U.; Othman, N.; Ilyas, R.A. Effect of nanofillers on tribological properties of polymer nanocomposites: A review on recent development. Polymers 2021, 13, 2867. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Q.; Ruan, K.P.; Shi, X.T.; Yang, X.T.; Gu, J.W. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Wang, H.; Sun, A.; Qi, X.; Dong, Y.; Fan, B. Experimental and analytical investigations on tribological properties of PTFE/AP composites. Polymers 2021, 13, 4295. [Google Scholar] [CrossRef]
- Neşer, G. Polymer based composites in marine use: History and future trends. Procedia Eng. 2017, 194, 19–24. [Google Scholar] [CrossRef]
- Rohith, K.; Shreyas, S.; Vishnu Appaiah, K.B.; Sheshank, R.V.; Ganesha, B.B.; Vinod, B. Recent material advancement for marine application. Mater. Today Proc. 2019, 18, 4854–4859. [Google Scholar] [CrossRef]
- Yang, Z.R.; Guo, Z.W.; Yuan, C.Q. Effects of MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear 2019, 432, 102919. [Google Scholar] [CrossRef]
- Tran, P.; Nguyen, Q.T.; Lau, K.T. Fire performance of polymer-based composites for maritime infrastructure. Compos. Part B-Eng. 2018, 155, 31–48. [Google Scholar] [CrossRef]
- Liu, G.; Li, M. Experimental study on the lubrication characteristics of water-lubricated rubber bearings at high rotating speeds. Tribol. Int. 2021, 157, 106868. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, Z.L.; Zou, L.; Yang, J. Influence of both friction and wear on the vibration of marine water lubricated rubber bearing. Wear 2017, 376 Pt B, 920–930. [Google Scholar] [CrossRef]
- Liu, S.B.; Yang, B.E. Vibrations of flexible multistage rotor systems supported by water-lubricated rubber bearings. J. Vib. Acoust. 2017, 139, 021016. [Google Scholar] [CrossRef]
- Zhou, X.C.; Kuang, F.M.; Huang, J.; Liu, X.S.; Gryllias, K. Water-lubricated stern bearing rubber layer construction and material parameters: Effects on frictional vibration based on computer vision. Tribol. Trans. 2021, 64, 65–81. [Google Scholar] [CrossRef]
- Wu, K.P.; Zhou, G.W.; Mi, X.W.; Zhong, P.; Wang, W.B.; Liao, D.X. Tribological and vibration properties of three different polymer materials for water-lubricated bearings. Materials 2020, 13, 3154. [Google Scholar] [CrossRef]
- Wu, C.; Chen, F.; Long, X.H. The self-excited vibration induced by friction of the shaft-hull coupled system with the water-lubricated rubber bearing and its stick-slip phenomenon. Ocean Eng. 2020, 198, 107002. [Google Scholar] [CrossRef]
- Song, J.; Shi, H.; Liao, Z.; Wang, S.; Liu, Y.; Liu, W.; Peng, Z. Study on the nanomechanical and nanotribological behaviors of PEEK and CFRPEEK for biomedical applications. Polymers 2018, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.H.; Maeda, N.; Tirrell, M.; Israelachvili, J. Adhesion and friction of polymer surfaces: The effect of chain ends. Macromolecules 2005, 38, 3491–3503. [Google Scholar] [CrossRef]
- Ghahari, S.; Assi, L.N.; Alsalman, A.; Alyamaç, K.E. Fracture properties evaluation of cellulose nanocrystals cement paste. Materials 2020, 13, 2507. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, W.; Xie, G.X.; Luo, J.B. Self-lubricating PTFE-based composites with black phosphorus nano-sheets. Tribol. Lett. 2018, 66, 61. [Google Scholar] [CrossRef]
- Wang, W.; Xie, G.X.; Luo, J.B. Black phosphorus as a new lubricant. Friction 2018, 6, 116–142. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.S.; Cai, L.; Zhang, S.M.; Nah, J.; Yeom, J.; Wang, C. Air-stable humidity sensor using few-layer black phosphorus. ACS. Appl. Mater. Inter. 2017, 9, 10019–10026. [Google Scholar] [CrossRef]
- Ji, W.J.; Deng, H.; Sun, C.X.; Fu, Q. Nickel hydroxide as novel filler for high energy density dielectric polymer composites. Compos. Sci. Technol. 2019, 172, 117–124. [Google Scholar] [CrossRef]
- Zalegowski, K.; Piotrowski, T.; Garbacz, A. Influence of polymer modification on the microstructure of shielding concrete. Materials 2020, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Bahadur, S. The mechanism of filler action and the criterion of filler selection for reducing wear. Wear 1999, 225 Pt 1, 660–668. [Google Scholar] [CrossRef]
- Ding, Y.C.; Peng, Y.Q.; Chen, S.H.; Li, Z.Q.; Zhang, X.X.; Falaras, P.; Hu, L.H. A competitive coordination strategy to synthesize Co3O4@carbon flower-like structures for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 495, 143502. [Google Scholar] [CrossRef]
- Casamassa, E.; Fioravanti, A.; Mazzocchi, M.; Carotta, M.C.; Faga, M.G. Abrasive properties of ZnO: Influence of different nano-forms. Tribol. Int. 2020, 142, 105984. [Google Scholar] [CrossRef]
- Dong, C.L.; Yuan, C.Q.; Bai, X.Q.; Tian, Y. A novel approach to reduce deformation behaviors of HDPE polymer during friction. Appl. Surf. Sci. 2020, 503, 144311. [Google Scholar] [CrossRef]
- Chi, L.; Lu, S.; Yao, Y. Damping additives used in cement-matrix composites: A review. Compos. Part B-Eng. 2019, 164, 26–36. [Google Scholar] [CrossRef]
- Tang, X.N.; Yan, X. A review on the damping properties of fiber reinforced polymer composites. J. Ind. Text. 2020, 49, 6. [Google Scholar] [CrossRef]
- Sun, Y.F.; Gong, J.; Liu, Y.; Jiang, Y.J.; Xi, Z.H.; Cai, J.; Xie, H.F. Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. J. Appl. Polym. Sci. 2019, 136, 47027. [Google Scholar] [CrossRef]
- Xue, F.; Chen, L.B.; Wang, L.F.; Pang, Y.K.; Chen, J.; Zhang, C.; Wang, Z.L. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104–2109. [Google Scholar] [CrossRef]
- Dante, R.C.; Kajdas, C.K. A review and a fundamental theory of silicon nitride tribo-chemistry. Wear 2012, 288, 27–38. [Google Scholar] [CrossRef]
- Gates, R.S.; Hsu, S.M. Effect of selected chemical compounds on the lubrication of silicon nitride. Tribol. Trans. 1991, 34, 417–425. [Google Scholar] [CrossRef]
- Lin, B.; Ding, M.; Sui, T.Y.; Cui, Y.X.; Yan, S.; Liu, X.B. Excellent water lubrication additives for silicon nitride to achieve super-lubricity under extreme conditions. Langmuir 2019, 35, 14861–14869. [Google Scholar] [CrossRef]
- Jordi, L.; Iliev, C.; Fischer, T.E. Lubrication of silicon nitride and silicon carbide by water: Running in, wear and operation of sliding bearings. Tribol. Lett. 2004, 17, 367–376. [Google Scholar] [CrossRef]
- Belyaeva, L.A.; Schneider, G.F. Wettability of graphene. Surf. Sci. Rep. 2020, 75, 2. [Google Scholar] [CrossRef]
- Jiang, Y.; Lian, J.; Jiang, Z.H.; Li, Y.C.; Wen, C.E. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Adv. Colloid. Interfac. 2020, 278, 102136. [Google Scholar] [CrossRef]
- Dong, C.L.; Yuan, C.Q.; Xu, A.J.; Bai, X.Q.; Tian, Y. Rippled polymer surface generated by stick–slip friction. Langmuir 2019, 35, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, S.M.; Joo, B.S.; Jang, H. The effect of material properties on the stick–slip behavior of polymers: A case study with PMMA, PC, PTFE, and PVC. Wear 2017, 378, 11–16. [Google Scholar] [CrossRef]
- Chen, W.; Shi, H.X.; Xin, H.; He, N.R.; Yang, W.L.; Gao, H.Z. Friction and wear properties of Si3N4–hBN ceramic composites using different synthetic lubricants. Ceram. Int. 2018, 44, 16799–16808. [Google Scholar] [CrossRef]
- Fischer, T.E.; Tomizawa, H. Interaction of tribo-chemistry and micro-fracture in the friction and wear of silicon nitride. Wear 1985, 105, 29–45. [Google Scholar] [CrossRef]
- Guo, P.F.; Geng, Z.R.; Lu, Z.B.; Zhang, G.G.; Wu, Z.G. Probing the lubrication mechanism of rough diamond-like carbon films against silicon nitride under water. Tribol. Int. 2018, 128, 248–259. [Google Scholar] [CrossRef]
- Guo, F.; Wang, Z.X.; Liu, Y.; Wang, Y.M.; Tian, Y. Investigation of ultra–low friction between self–mated Si3N4 in water after running–in. Tribol. Int. 2017, 115, 365–369. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, K.; Wang, M.; Xu, X.; Meng, H.; Yu, M. Friction and wear properties of CrN coatings sliding against Si3N4 balls in water and air. Wear 2018, 265, 1029–1037. [Google Scholar] [CrossRef]
- Looijmans, S.F.S.P.; Anderson, P.D.; van Breemen, L.C.A. Contact mechanics of isotactic polypropylene: Effect of pre-stretch on the frictional response. Wear 2018, 398, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Looijmans, S.F.S.P.; Anderson, P.D.; van Breemen, L.C.A. Contact mechanics of high–density polyethylene: Effect of pre-stretch on the frictional response and the onset of wear. Wear 2018, 410, 142–149. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, S.; Dong, C.; Yuan, C.; Bai, X. The Reduction in the Deformation of HDPE Composites Using Self-Lubricating Fillers in an Aqueous Environment. Polymers 2022, 14, 433. https://doi.org/10.3390/polym14030433
Liu C, Liu S, Dong C, Yuan C, Bai X. The Reduction in the Deformation of HDPE Composites Using Self-Lubricating Fillers in an Aqueous Environment. Polymers. 2022; 14(3):433. https://doi.org/10.3390/polym14030433
Chicago/Turabian StyleLiu, Chuanbo, Shutian Liu, Conglin Dong, Chengqing Yuan, and Xiuqin Bai. 2022. "The Reduction in the Deformation of HDPE Composites Using Self-Lubricating Fillers in an Aqueous Environment" Polymers 14, no. 3: 433. https://doi.org/10.3390/polym14030433
APA StyleLiu, C., Liu, S., Dong, C., Yuan, C., & Bai, X. (2022). The Reduction in the Deformation of HDPE Composites Using Self-Lubricating Fillers in an Aqueous Environment. Polymers, 14(3), 433. https://doi.org/10.3390/polym14030433