Effect of Rheological Properties of Polymer Solution on Polymer Flooding Characteristics
Abstract
:1. Introduction
2. Experimental Section
2.1. Material
2.2. Rheological Measurement
2.3. Preparation and Characteristic of Core Sample
3. Results and Discussion
3.1. Rheological Measurements
3.2. Concentration and Salinity Examination
3.3. Temperature Effect
3.4. Investigation of Thixotropic Properties
3.5. Core Flooding
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Hamza, M.F.; Khandaker, M.U.; Sikiru, S.; Adam, A.A.; Sani, S.F.A.; Abdulkadir, B.A.; Ayub, S. The Influence of ZnO/SiO2 nanocomposite concentration on rheology, interfacial tension, and wettability for enhanced oil recovery. Chem. Eng. Res. Des. 2022, 179, 452–461. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vardhan, K.H.; Jeevanantham, S.; Karishma, S.B.; Yaashikaa, P.R.; Vellaichamy, P. A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. J. Clean. Prod. 2020, 258, 120777. [Google Scholar] [CrossRef]
- Bera, A.; Shah, S.; Shah, M.; Agarwal, J.; Vij, R.K. Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124833. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, M.B.; Al-Shehri, D.; Rahaman, M.M.; Keshavarz, A.; Hossain, S.Z. Comparative study of green and synthetic polymers for enhanced oil recovery. Polymers 2020, 12, 2429. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.Y.; Zhang, K.; Chon, B.H.; Choi, H.J. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem. 2015, 21, 741–745. [Google Scholar] [CrossRef]
- Fakoya, M.F.; Ahmed, R.M. A generalized model for apparent viscosity of oil-based muds. J. Pet. Sci. Eng. 2018, 165, 777–785. [Google Scholar] [CrossRef]
- Cheng, Z.; Ning, Z.; Dai, S. The electroviscous flow of non-Newtonian fluids in microtubes and implications for nonlinear flow in porous media. J. Hydrol. 2020, 590, 125224. [Google Scholar] [CrossRef]
- Chen, K.; Li, J.; Feng, Y.; He, F.; Zhou, Q.; Xiao, D.; Tang, Y. Structural and rheological characterizations of nanoparticles of environment-sensitive hydrophobic alginate in aqueous solution. Mater. Sci. Eng. C 2017, 70, 617–627. [Google Scholar] [CrossRef]
- El-Hoshoudy, A. Synthesis of acryloylated starch-g-poly acrylates crosslinked polymer functionalized by emulsified vinyltrimethylsilane derivative as a novel EOR agent for severe polymer flooding strategy. Int. J. Biol. Macromol. 2019, 123, 124–132. [Google Scholar] [CrossRef]
- Agi, A.; Junin, R.; Gbonhinbor, J.; Onyekonwu, M. Natural polymer flow behaviour in porous media for enhanced oil recovery applications: A review. J. Pet. Explor. Prod. Technol. 2018, 8, 1349–1362. [Google Scholar] [CrossRef]
- Chaturvedi, K.R.; Sharma, T. Rheological analysis and EOR potential of surfactant treated single-step silica nanofluid at high temperature and salinity. J. Pet. Sci. Eng. 2021, 196, 107704. [Google Scholar] [CrossRef]
- Zhang, M.; Kang, W.; Yang, H.; Li, Z.; Li, X.; Zhou, B.; Kang, X.; Li, M.; Sarsenbekuly, B. Rheology and microstructure of zwitterionic-anionic surfactant for enhanced oil recovery. J. Mol. Liq. 2021, 341, 116910. [Google Scholar] [CrossRef]
- Li, X.; Pu, C.; Chen, X. Improved foam stability through the combination of silica nanoparticle and thixotropic polymer: An experimental study. J. Mol. Liq. 2022, 346, 117153. [Google Scholar] [CrossRef]
- Ge, J.; Wu, Q.; Ding, L.; Guo, H.; Zhao, A. Preparation and rheological Evaluation of a thixotropic polymer gel for water shutoff in fractured tight reservoirs. J. Pet. Sci. Eng. 2022, 208, 109542. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Leng, K.; Li, B.; Feng, C.; Huo, X. Can Supramolecular Polymers Become Another Material Choice for Polymer Flooding to Enhance Oil Recovery? Polymers 2022, 14, 4405. [Google Scholar] [CrossRef]
- Jouenne, S. Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. J. Pet. Sci. Eng. 2020, 195, 107545. [Google Scholar] [CrossRef]
- Scott, A.J.; Romero-Zerón, L.; Penlidis, A. Evaluation of polymeric materials for chemical enhanced oil recovery. Processes 2020, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Firozjaii, A.M.; Saghafi, H.R. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation. Petroleum 2020, 6, 115–122. [Google Scholar] [CrossRef]
- Department, A.P.I.P. Recommended Practices for Evaluation of Polymers Used in Enhanced Oil Recovery Operations; American Petroleum Institute: Washington, DC, USA, 1990; Volume 63. [Google Scholar]
- Navaie, F.; Esmaeilnezhad, E.; Choi, H.J. Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. J. Mol. Liq. 2022, 354, 118909. [Google Scholar] [CrossRef]
- Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 2010, 89, 1095–1100. [Google Scholar] [CrossRef]
- Qiannan, Y.; Yikun, L.; Liang, S.; Shuai, T.; Zhi, S.; Yang, Y. Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China. Pet. Explor. Dev. 2019, 46, 1206–1217. [Google Scholar]
- Esmaeilnezhad, E.; Le Van, S.; Chon, B.H.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. An experimental study on enhanced oil recovery utilizing nanoparticle ferrofluid through the application of a magnetic field. J. Ind. Eng. Chem. 2018, 58, 319–327. [Google Scholar] [CrossRef]
- Chauhan, G.; Verma, A.; Das, A.; Ojha, K. Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol. Acta 2018, 57, 267–285. [Google Scholar] [CrossRef]
- Miguel, P.R.; Joanna, Z.; Stefano, Z.; Alejandro, S.; Eduardo, T. Fluid dynamics analysis and performance of polymer flow regulators for polymer flooding in multilayered reservoirs. J. Pet. Sci. Eng. 2022, 208, 109680. [Google Scholar] [CrossRef]
- Pang, B.; Wang, S.; Chen, W.; Hassan, M.; Lu, H. Effects of flow behavior index and consistency coefficient on hydrodynamics of power-law fluids and particles in fluidized beds. Powder Technol. 2020, 366, 249–260. [Google Scholar] [CrossRef]
- Pishkar, I.; Ghasemi, B.; Raisi, A.; Aminossadati, S.M. Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J. Therm. Anal. Calorim. 2019, 138, 1697–1710. [Google Scholar] [CrossRef]
- Xin, X.; Yu, G.; Wu, K.; Dong, X.; Chen, Z. Polymer Flooding in Heterogeneous Heavy Oil Reservoirs: Experimental and Simulation Studies. Polymers 2021, 13, 2636. [Google Scholar] [CrossRef]
- Amiri, M.; Moghadasi, J.; Jamialahmadi, M. The effect of temperature on calcium sulfate scale tendency in an Iranian oil reservoir and production equipment during water injection. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 2264–2273. [Google Scholar] [CrossRef]
- Özdemir, A.; Turkoz, M. Development of a D-optimal design-based 0–1 mixed-integer nonlinear robust parameter design optimization model for finding optimum design factor level settings. Comput. Ind. Eng. 2020, 149, 106742. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Le Van, S.; Choi, H.J.; Chon, B.H.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Conformance control in oil reservoir based on magnetorheological behavior of nanoparticle suspension. J. Environ. Manag. 2019, 231, 1127–1134. [Google Scholar] [CrossRef]
- Radnia, H.; Rashidi, A.; Nazar, A.R.S.; Eskandari, M.M.; Jalilian, M. A novel nanofluid based on sulfonated graphene for enhanced oil recovery. J. Mol. Liq. 2018, 271, 795–806. [Google Scholar] [CrossRef]
- Akbari, S.; Mahmood, S.M.; Tan, I.M.; Ghaedi, H.; Ling, O.L. Assessment of polyacrylamide based co-polymers enhanced by functional group modifications with regards to salinity and hardness. Polymers 2017, 9, 647. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Yelash, L.; Schmid, F.; Kummer, F.; Oberlack, M.; Lukáčová-Medvid’ová, M.; Virnau, P. Shear-thinning in oligomer melts—Molecular origins and applications. Polymers 2021, 13, 2806. [Google Scholar] [CrossRef]
- Pandey, A.; Sinha, A.; Chaturvedi, K.R.; Sharma, T. Experimental investigation on effect of reservoir conditions on stability and rheology of carbon dioxide foams of nonionic surfactant and polymer: Implications of carbon geo-storage. Energy 2021, 235, 121445. [Google Scholar] [CrossRef]
- Ghica, M.V.; Hîrjău, M.; Lupuleasa, D.; Dinu-Pîrvu, C.-E. Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules 2016, 21, 786. [Google Scholar] [CrossRef]
- Friedowitz, S.; Qin, J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J. 2021, 67, e17426. [Google Scholar] [CrossRef]
- Lopez, C.G.; Richtering, W. Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose. Cellulose 2019, 26, 1517–1534. [Google Scholar] [CrossRef]
- Mao, J.; Cao, H.; Zhang, H.; Du, A.; Xue, J.; Lin, C.; Yang, X.; Wang, Q.; Mao, J.; Chen, A. Design of salt-responsive low-viscosity and high-elasticity hydrophobic association polymers and study of association structure changes under high-salt conditions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129512. [Google Scholar] [CrossRef]
- Musa, T.A.; Ibrahim, A.F.; Nasr-El-Din, H.A.; Hassan, A. New insights into guar gum as environmentally friendly polymer for enhanced oil recovery in high-salinity and high-temperature sandstone reservoirs. J. Pet. Explor. Prod. 2021, 11, 1905–1913. [Google Scholar] [CrossRef]
- Benjamin, D.J.; Berger, J.O. Three recommendations for improving the use of p-values. Am. Stat. 2019, 73, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Seright, R.S.; Wavrik, K.E.; Zhang, G.; AlSofi, A.M. Stability and behavior in carbonate cores for new enhanced-oil-recovery polymers at elevated temperatures in hard saline brines. SPE Reserv. Eval. Eng. 2021, 24, 1–18. [Google Scholar] [CrossRef]
- Ghoddousi, P.; Shirzadi Javid, A.A.; Ghodrati Amiri, G.; Donyadideh, K. Predicting the formwork lateral pressure of self-consolidating concrete based on experimental thixotropy values. Int. J. Civ. Eng. 2019, 17, 1131–1144. [Google Scholar] [CrossRef]
- Wang, B.; Cavallo, D.; Zhang, X.; Zhang, B.; Chen, J. Evolution of chain entanglements under large amplitude oscillatory shear flow and its effect on crystallization of isotactic polypropylene. Polymer 2020, 186, 121899. [Google Scholar] [CrossRef]
- Larson, R.G.; Wei, Y. A review of thixotropy and its rheological modeling. J. Rheol. 2019, 63, 477–501. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Y.; Chen, X.; Zhao, B.; Zhang, J. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocoll. 2014, 38, 119–128. [Google Scholar] [CrossRef]
- Tian, Z.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models. Mater. Sci. Eng. C 2016, 63, 10–17. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Li, P.; Liu, M.; Zhu, L.; Zhang, H.; Zhang, C.; Hu, G.; Hu, M.; Guo, J. Rheological behavior of oil well cement pastes containing various types of dispersants at different hydration temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126821. [Google Scholar] [CrossRef]
- Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Shakeel, M.; Pourafshary, P.; Rehan Hashmet, M. Hybrid Engineered Water–Polymer Flooding in Carbonates: A Review of Mechanisms and Case Studies. Appl. Sci. 2020, 10, 6087. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Tang, Y.; Li, B.; Song, Z.; Hou, J. Formation damage during alkaline-surfactant-polymer flooding in the Sanan-5 block of the Daqing Oilfield, China. J. Nat. Gas Sci. Eng. 2016, 35, 826–835. [Google Scholar] [CrossRef]
- Goudarzi, A.; Zhang, H.; Varavei, A.; Taksaudom, P.; Hu, Y.; Delshad, M.; Bai, B.; Sepehrnoori, K. A laboratory and simulation study of preformed particle gels for water conformance control. Fuel 2015, 140, 502–513. [Google Scholar] [CrossRef]
Core Name | Core Type | Length (cm) | Diameter (cm) | Porosity (%) | Gas Permeability (mD) | Liquid Permeability (mD) |
---|---|---|---|---|---|---|
Fn-600 | Carbonate | 6.97 | 3.73 | 18.65 | 35.79 | 8.02 |
Fn-700 | Sandstone | 7.08 | 3.72 | 8.59 | 35.31 | 5.46 |
Polymer | Concentration (ppm) | τo (Pa) | k | n | Adj. R-Square |
---|---|---|---|---|---|
Flopaam 3630S | 500 | 0.37 | 0.00005 | 1.74 | 0.98 |
1000 | 2.13 | 0.00014 | 1.57 | 0.97 | |
1500 | 2.69 | 0.00037 | 1.49 | 0.96 | |
B192 | 500 | 0.68 | 0.00002 | 1.75 | 0.95 |
1000 | 0.70 | 0.00749 | 0.99 | 0.96 | |
1500 | 1.10 | 0.06379 | 0.75 | 0.97 |
Polymer | Concentration (ppm) | τy (Pa) | ηo (Pa.S) | Adj. R-Square |
---|---|---|---|---|
Flopaam 3630S | 1000 | 0.09 | 0.0109 | 0.94 |
1500 | 2.53 | 0.0099 | 0.97 | |
B192 | 1000 | 0.071 | 0.0072 | 0.96 |
1500 | 2.53 | 0.0099 | 0.96 |
B192 Run | Factors | Viscosity (cp) | |
---|---|---|---|
Polymer Conc. (ppm) | Salinity | ||
1 | 1000 | No Salt | 7.46 |
2 | 1000 | Low Sal | 3.76 |
3 | 1000 | High Sal | 3.25 |
4 | 1000 | Persian Gulf | 3.02 |
5 | 1500 | No Salt | 12.05 |
6 | 1500 | Low Sal | 5.42 |
7 | 1500 | High Sal | 4.64 |
8 | 1500 | Persian Gulf | 4.04 |
Flopaam Run | Factors | Viscosity (cp) | |
Polymer Conc. (ppm) | Salinity | ||
1 | 1000 | No Salt | 10.69 |
2 | 1000 | Low Sal | 10.62 |
3 | 1000 | High Sal | 10.03 |
4 | 1000 | Persian Gulf | 7.91 |
5 | 1500 | No Salt | 13.25 |
6 | 1500 | Low Sal | 11.59 |
7 | 1500 | High Sal | 11.17 |
8 | 1500 | Persian Gulf | 9.61 |
B192 Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 0.065 | 4 | 0.016 | 37.91 | < 0.0001 |
A-Polymer Conc. | 0.020 | 1 | 0.020 | 46.73 | < 0.0001 |
B- Salinity | 0.045 | 3 | 0.015 | 34.97 | 0.002 |
Residual | 4.731E-0.03 | 11 | 4.301E | ||
Cor Total | 0.070 | 15 | |||
Flopaam 3630 Source | Sum of Squares | df | Mean Square | F Value | p-value Prob > F |
Model | 24.45 | 4 | 6.11 | 38.80 | < 0.0001 |
A-Polymer Conc. | 9.19 | 1 | 9.19 | 59.81 | < 0.0001 |
B- Salinity | 17.94 | 3 | 5.98 | 38.93 | 0.01 |
Residual | 1.54 | 10 | 15 | ||
Cor Total | 25.98 | 14 |
Sample | Salinity | Up Curve | |||
---|---|---|---|---|---|
τo (Pa) | K | n | R2 | ||
1000 ppm | No Salt | 0.046 | 0.071 | 0.727 | 1.000 |
Low Sal. | 0.531 | 1.128 | 1.558 | 0.999 | |
High Sal. | 0.472 | 1.030 | 1.557 | 0.998 | |
Persian Gulf | 0.445 | 1.023 | 1.549 | 0.998 | |
1500 ppm | No Salt | 0 | 0.154 | 0.658 | 0.999 |
Low Sal. | 0.700 | 2.962 | 1.455 | 0.995 | |
High Sal. | 0.650 | 7.441 | 1.633 | 0.999 | |
Persian Gulf | 0.566 | 4.776 | 1.682 | 0.999 | |
Sample | Salinity | Down Curve | |||
τo (Pa) | K | n | R2 | ||
1000 ppm | No Salt | 1.101 | 1.162 | 1.892 | 0.949 |
Low Sal. | 0.602 | 3.890 | 3.166 | 0.928 | |
High Sal. | 0.637 | 2.076 | 3.219 | 0.923 | |
Persian Gulf | 0.657 | 5.024 | 3.387 | 0.924 | |
1500 ppm | No Salt | 0.962 | 0.005 | 1.080 | 0.947 |
Low Sal. | 0.306 | 2.651 | 2.698 | 0.946 | |
High Sal. | 0.410 | 1.107 | 2.765 | 0.941 | |
Persian Gulf | 0.490 | 3.313 | 2.897 | 0.930 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navaie, F.; Esmaeilnezhad, E.; Choi, H.-J. Effect of Rheological Properties of Polymer Solution on Polymer Flooding Characteristics. Polymers 2022, 14, 5555. https://doi.org/10.3390/polym14245555
Navaie F, Esmaeilnezhad E, Choi H-J. Effect of Rheological Properties of Polymer Solution on Polymer Flooding Characteristics. Polymers. 2022; 14(24):5555. https://doi.org/10.3390/polym14245555
Chicago/Turabian StyleNavaie, Farhood, Ehsan Esmaeilnezhad, and Hyoung-Jin Choi. 2022. "Effect of Rheological Properties of Polymer Solution on Polymer Flooding Characteristics" Polymers 14, no. 24: 5555. https://doi.org/10.3390/polym14245555