Capacitors Based on Polypyrrole Nanowire Electrodeposits
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Rojas, F.; Castaneda, E.; Armijo, F. Conducting polymer applied in a label-free electrochemical immunosensor for the detection prostate-specific antigen using its redox response as an analytical signal. J. Electroanal. Chem. 2021, 880, 114877. [Google Scholar] [CrossRef]
- Martinez-Rojas, F.; Diculescu, V.C.; Armijo, F. Electrochemical Immunosensing Platform for the Determination of the 20S Proteasome Using an Aminophenylboronic/Poly-indole-6-carboxylic Acid-Modified Electrode. ACS Appl. Bio. Mater. 2020, 3, 4941–4948. [Google Scholar] [CrossRef] [PubMed]
- Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Dos Santos, D.A.; Bredas, J.L.; Logdlund, M.; et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128. [Google Scholar] [CrossRef]
- Ramirez, A.M.; Cattin, L.; Bernede, J.C.; Diaz, F.R.; Gacitua, M.A.; del Valle, M.A. Nanostructured TiO2 and PEDOT Electrodes with Photovoltaic Application. Nanomaterials 2021, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.-M.; Jiang, K.-J.; Zhang, Y.; Yu, G.-H.; Gao, C.-Y.; Fan, X.-H.; Yang, L.-M. In-Situ polymerization of PEDOT in perovskite Thin films for efficient and stable photovoltaics. Chem. Eng. J. 2022, 430, 133109. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H.; Park, C.; Kim, H.S.; Park, J.H.; Chung, K.Y.; Ahn, H. Controlling Vanadate Nanofiber Interlayer via Intercalation with Conducting Polymers: Cathode Material Design for Rechargeable Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2021, 31, 2100005. [Google Scholar] [CrossRef]
- Jung, Y.J.; Singh, N.; Choi, K.S. Cathodic Deposition of Polypyrrole Enabling the One-Step Assembly of Metal-Polymer Hybrid Electrodes. Angew. Chem. Int. Ed. 2009, 48, 8331–8334. [Google Scholar] [CrossRef]
- Huang, X.H.; Tu, J.P.; Xia, X.H.; Wang, X.L.; Xiang, J.Y.; Zhang, L. Porous NiO/poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries. J. Power Sources 2010, 195, 1207–1210. [Google Scholar] [CrossRef]
- Ma, X.M.; Zhou, W.Q.; Mo, D.Z.; Hou, J.; Xu, J.K. Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochim. Acta 2015, 176, 1302–1312. [Google Scholar] [CrossRef]
- Liu, W.N.; Li, X.X.; Li, W.J.; Ye, Y.M.; Wang, H.; Su, P.P.; Yang, W.Y.; Yang, Y. High-performance supercapacitors based on free-standing SiC@PEDOT nanowires with robust cycling stability. J. Energy Chem. 2022, 66, 30–37. [Google Scholar] [CrossRef]
- Jeon, J.W.; Ma, Y.G.; Mike, J.F.; Shao, L.; Balbuena, P.B.; Lutkenhaus, J.L. Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage. Phys. Chem. Chem. Phys. 2013, 15, 9654–9662. [Google Scholar] [CrossRef]
- Lota, K.; Lota, G.; Sierczynska, A.; Acznik, I. Carbon/polypyrrole composites for electrochemical capacitors. Synth. Met. 2015, 203, 44–48. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Tietje-Girault, J.; Ponce de Leon, C.; Walsh, F.C. Electrochemically deposited polypyrrole films and their characterization. Surf. Coat. Tech. 2007, 201, 6025–6034. [Google Scholar] [CrossRef]
- Canoluk, C.; Gursoy, S.S. Chemical modification of rose leaf with polypyrrole for the removal of Pb (II) and Cd (II) from aqueous solution. J. Macromol. Sci. A 2017, 54, 782–790. [Google Scholar] [CrossRef]
- Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole. 2. Influence of acidity on the formation of polypyrrole and the multipathway mechanism. J. Phys. Chem. B 1999, 103, 8443–8450. [Google Scholar] [CrossRef]
- Funt, B.L.; Diaz, A.F. Organic Electrochemistry: An Introduction and a Guide; Marcel Dekker: New York, NY, USA, 1991; p. 1337. [Google Scholar]
- Genies, E.M.; Bidan, G.; Diaz, A.F. Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. 1983, 149, 101. [Google Scholar] [CrossRef]
- del Valle, M.A.; Ramirez, A.M.R.; Diaz, F.R.; Pardo, M.A.; Ortega, E.; Armijo, F. Influence of the Electrolyte Salt on the Electrochemical Polymerization of Pyrrole. Effects on p-Doping/Undoping, Conductivity and Morphology. Int. J. Electrochem. Sci. 2018, 13, 12404–12419. [Google Scholar] [CrossRef]
- Bae, J.; Park, J.Y.; Kwon, O.S.; Lee, C.S. Energy efficient capacitors based on graphene/conducting polymer hybrids. J. Ind. Eng. Chem. 2017, 51, 1–11. [Google Scholar] [CrossRef]
- Gan, J.K.; Lim, Y.S.; Pandikumar, A.; Huang, N.M.; Lim, H.N. Graphene/polypyrrole-coated carbon nanofiber core-shell architecture electrode for electrochemical capacitors. RSC Adv. 2015, 5, 12692–12699. [Google Scholar] [CrossRef]
- Ramírez, A.M.R.; Gacitúa, M.A.; Ortega, E.; Díaz, F.R.; del Valle, M.A. Electrochemical in situ synthesis of polypyrrole nanowires. Electrochem. Commun. 2019, 102, 94–98. [Google Scholar] [CrossRef]
- Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 2007, 6, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Acc. Chem. Res. 2021, 54, 3563–3575. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Herzog, G.; Vila, N.; Walcarius, A. Electrografting and electropolymerization of nanoarrays of PAni filaments through silica mesochannels. Electrochem. Commun. 2021, 122, 106896. [Google Scholar] [CrossRef]
- Hernandez, L.A.; del Valle, M.A.; Diaz, F.R.; Fermin, D.J.; Risbridger, T.A.G. Polymeric nanowires directly electrosynthesized on the working electrode. Electrochim. Acta 2015, 166, 163–167. [Google Scholar] [CrossRef]
- Hernandez, L.A.; del Valle, M.A.; Armijo, F. Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA. Biosens. Bioelectron. 2016, 79, 280–287. [Google Scholar] [CrossRef]
- Ramirez, M.R.A.; del Valle, M.A.; Armijo, F.; Diaz, F.R.; Pardo, M.A.; Ortega, E. Enhancement of electrodes modified by electrodeposited PEDOT-nanowires with dispersed Pt nanoparticles for formic acid electro-oxidation. J. Appl. Polym. Sci. 2017, 134, 44723–44729. [Google Scholar] [CrossRef]
- East, G.A.; del Valle, M.A. Easy-to-make Ag/AgCl reference electrode. J. Chem. Educ. 2000, 77, 97. [Google Scholar] [CrossRef]
- Mo, D.Z.; Zhou, W.Q.; Ma, X.M.; Xu, J.K.; Zhu, D.H.; Lu, B.Y. Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene bis-substituted bithiophene) electrode material. Electrochim. Acta 2014, 132, 67–74. [Google Scholar] [CrossRef]
- Del Valle, M.A.; Ramirez, A.M.; Hernandez, L.A.; Armijo, F.; Diaz, F.R.; Arteaga, G.C. Influence of the Supporting Electrolyte on the Electrochemical Polymerization of 3,4-Ethylenedioxythiophene. Effect on p- and n-Doping/Undoping, Conductivity and Morphology. Int. J. Electrochem. Sci. 2016, 11, 7048–7065. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Ma, X.M.; Jiang, F.X.; Zhu, D.H.; Xu, J.K.; Lu, B.Y.; Liu, C.C. Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochim. Acta 2014, 138, 270–277. [Google Scholar] [CrossRef]
- Yang, X.; Liu, A.; Zhao, Y.; Lu, H.; Zhang, Y.; Wei, W.; Li, Y.; Liu, S. Three-Dimensional Macroporous Polypyrrole-Derived Graphene Electrode Prepared by the Hydrogen Bubble Dynamic Template for Supercapacitors and Metal-Free Catalysts. ACS Appl. Mater. Interfaces 2015, 7, 23731–23740. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.S. Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. J. Phys. Chem. C 2012, 116, 5420–5426. [Google Scholar] [CrossRef]
- Weerasinghe, W.A.D.S.S.; Vidanapathirana, K.P.; Perera, K.S.; Bandaranayake, C.M. Effect of polymerization current density of electrodes on the performance of polypyrrole based redox-capacitor. J. Natl. Sci. Found. Sri Lanka 2017, 45, 73–77. [Google Scholar] [CrossRef]
- Del Valle, M.A.; Ramirez, A.; Hernandez, L.; Gacitua, M.A. Batteries Rechargeable by Solar Power, Based on Nanostructured Polymers (Chile Patent No. I. N. d. P. I. I. (Chile). 2018. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020107131 (accessed on 10 November 2022).
- Del Valle, M.A.; Gacitua, M.A.; Hernandez, L.A.; Díaz, F.R. Electrosynthesis of Polymer Nanothreads Directly onto Solid Surfaces (Electrodes) (Chile Patent No. I. N. d. P. I. I. (Chile). 2018. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020107130 (accessed on 10 November 2022).
- Del Valle, M.A.; Ramos, A.C.; Diaz, F.R.; Gacitua, M.A. Electrosynthesis and Characterisation of Polymer Nanowires from Thiophene and its Oligomers. J. Braz. Chem. Soc. 2015, 26, 2313–2320. [Google Scholar]
- Del Valle, M.A.; Hernández, L.A.; Díaz, F.R.; Ramos, A.C. Electrosynthesis and Characterization of Poly(3,4- ethylenedioxythiophene) Nanowires. Int. J. Electrochem. Sci. 2015, 10, 5152–5163. [Google Scholar]
- Del Valle, M.A.; Gacitua, M.; Diaz, F.R.; Armijo, F.; Soto, J.P. Electro-synthesis and characterization of polythiophene nanowires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation. Electrochim. Acta 2012, 71, 277–282. [Google Scholar] [CrossRef]
- Del Valle, M.A.; Gacitua, M.A.; Diaz, F.R.; Armijo, J.F.; del Rio, R.R. Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates. Electrochem. Commun. 2009, 11, 2117–2120. [Google Scholar] [CrossRef]
- Del Valle, M.A.; Salgado, R.; Armijo, F. PEDOT Nanowires and Platinum Nanoparticles Modified Electrodes to be Assayed in Formic Acid Electro-oxidation. Int. J. Electrochem. Sci. 2014, 9, 1557–1564. Available online: http://www.electrochemsci.org/papers/vol9/90301557.pdf (accessed on 10 November 2022).
- Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochim. Acta 1999, 44, 1733–1748. [Google Scholar] [CrossRef]
- Wu, T.M.; Lin, S.H. Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J. Polym. Sci. Pol. Phys. 2006, 44, 1413–1418. [Google Scholar] [CrossRef]
- Mansour, A.E.; Valencia, A.M.; Lungwitz, D.; Wegner, B.; Tanaka, N.; Shoji, Y.; Fukushima, T.; Opitz, A.; Cocchi, C.; Koch, N. Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): Signatures of polarons and bipolarons. Phys. Chem. Chem. Phys. 2022, 24, 3109–3118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Burke, A.F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021, 59, 276–291. [Google Scholar] [CrossRef]
- Hui, N.; Wang, J.; Liang, A.; Jiang, M. Conducting polyaniline nanowire arrays modified electrode for high performance supercapacitor and enhanced catalysis of nitrite reduction. Electroanalysis 2016, 28, 2979–2984. [Google Scholar] [CrossRef]
- Tran, C.B.; Zondaka, Z.; Le, Q.B.; Velmurugan, B.K.; Kiefer, R. Polypyrrole with Phosphor Tungsten Acid and Carbide-Derived Carbon: Change of Solvent in Electropolymerization and Linear Actuation. Materials 2021, 14, 6302. [Google Scholar] [CrossRef]
- Torop, J.; Aabloo, A.; Jagera, W.H.E. Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials. Carbon 2014, 80, 387. [Google Scholar] [CrossRef]
- Khuyen, N.Q.; Kiefer, R.; Zondaka, Z.; Anbarjafari, G.; Peikolainen, A.-L.; Otero, T.F.; Tamm, T. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage. Polymers 2020, 12, 2060. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]





| Electrode | Ep 1/V | Qd 2 (mC cm−2) | Qud 3 (mC cm−2) | Qd/Qud 4 |
|---|---|---|---|---|
| PPy bulk | 0.60 | 0.10 | 0.10 | 1.04 |
| PPy-nw | 0.42 | 31.8 | 30.5 | 1.04 |
| Potentiodynamic | ||||||||
| Scan Rates (mV s−1) | 10 | 20 | 50 | 75 | 100 | 150 | ||
| PPy bulk | Specific Capacitance (F g−1) | 1.05 | 0.72 | 0.55 | 0.44 | 0.36 | 0.29 | |
| PPy-nw | 102.6 | 75.7 | 59.7 | 50.9 | 43.3 | 37.2 | ||
| Galvanostatic | ||||||||
| Current (mA) | 0.05 | 0.10 | 0.15 | |||||
| PPy bulk | Specific Capacitance (F g−1) | 4.86 | 3.84 | 3.49 | ||||
| PPy-nw | 263.9 | 217.4 | 200.9 | |||||
| Electrode Architecture | Perturbation Type and Intensity | Electrolyte | Specific Capacitance | Capacitance Retention%, Charge Cycle Number and Charge Potential | Ref. |
|---|---|---|---|---|---|
| GC|GO/PPy 1 | G 3: 1 mA cm−2 | KCl | 196 mF cm−1 | 90% for 500 cycles and 1.0 V | [33] |
| Au|GO/PPy 2 | G 3: 0.3 A g−1 | H2SO4 | 249 F g−1 | 81% for 1000 cycles and 1.0 V | [34] |
| FTO|PPy 1 | P 4: 20 mV s−1 | SDBS | 12 F g−1 | - | [35] |
| FTO|PPy 1 | G 3 2 mA cm−2 | SDBS | 7 F g−1 | - | [35] |
| PPyCDC-EG 1 | G 3 2 A g−1 | NaClO4 | 190 F g−1 | 90% for 1000 cycles and 0.3 V | [48] |
| PPy(SDBS)CDC 1 | P 4: 10 mV s−1 | SDBS | 131 F g−1 | - | [49] |
| PPy-PEO/DBS 1 | G 3 0.24 Ag−1 | NaCl | 100 F g−1 | - | [50] |
| ITO|nw-PPy 1 | G 3: 0.15 mA | LiCl | 291 F g−1 | 76.5% for 1000 cycles and 0.77 V | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, A.M.R.; del Valle, M.A.; Ortega, E.; Díaz, F.R.; Gacitúa, M.A. Capacitors Based on Polypyrrole Nanowire Electrodeposits. Polymers 2022, 14, 5476. https://doi.org/10.3390/polym14245476
Ramírez AMR, del Valle MA, Ortega E, Díaz FR, Gacitúa MA. Capacitors Based on Polypyrrole Nanowire Electrodeposits. Polymers. 2022; 14(24):5476. https://doi.org/10.3390/polym14245476
Chicago/Turabian StyleRamírez, A. M. R., M. A. del Valle, E. Ortega, F. R. Díaz, and M. A. Gacitúa. 2022. "Capacitors Based on Polypyrrole Nanowire Electrodeposits" Polymers 14, no. 24: 5476. https://doi.org/10.3390/polym14245476
APA StyleRamírez, A. M. R., del Valle, M. A., Ortega, E., Díaz, F. R., & Gacitúa, M. A. (2022). Capacitors Based on Polypyrrole Nanowire Electrodeposits. Polymers, 14(24), 5476. https://doi.org/10.3390/polym14245476

