High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization and Testing
3. Results and Discussion
3.1. Cure Characteristics of NBR/TiO2 Composites
3.2. Mechanical Properties
3.3. Morphology Characterization
3.4. Dynamic Mechanical Analysis
3.5. Dielectric Properties of NBR/TiO2 Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Huang, S.; Wu, Y.; Ruan, M.; Li, S.; Shang, Y.; Cui, X.; Wang, Y.; Guo, W. Enhanced Actuated Strain of Titanium Dioxide/Nitrile-Butadiene Rubber Composite by the Biomimetic Method. RSC Adv. 2015, 5, 65385–65394. [Google Scholar] [CrossRef]
- Franke, M.; Ehrenhofer, A.; Lahiri, S.; Henke, E.-F.M.; Wallmersperger, T.; Richter, A. Dielectric Elastomer Actuator Driven Soft Robotic Structures With Bioinspired Skeletal and Muscular Reinforcement. Front. Robot. AI 2020, 7, 510757. [Google Scholar] [CrossRef] [PubMed]
- Madsen, F.B.; Yu, L.; Daugaard, A.E.; Hvilsted, S.; Skov, A.L. Silicone Elastomers with High Dielectric Permittivity and High Dielectric Breakdown Strength Based on Dipolar Copolymers. Polymer 2014, 55, 6212–6219. [Google Scholar] [CrossRef]
- Skov, A.L.; Pei, Q.; Opris, D.; Spontak, R.J.; Gallone, G.; Shea, H.; Benslimane, M.Y. Dielectric Elastomers (DEs) as EAPs: Materials. In Electromechanically Active Polymers; Carpi, F., Ed.; Springer International Publishing: Cham, Germany, 2016; pp. 687–714. [Google Scholar] [CrossRef]
- Kanny, K.; Mohan, T.P. Rubber Nanocomposites with Nanoclay as the Filler. In Progress in Rubber Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 153–177. [Google Scholar] [CrossRef]
- Li, T.; Shi, Z.; He, X.; Jiang, P.; Lu, X.; Zhang, R.; Wang, X. Aging-Resistant Functionalized LDH–SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism. Materials 2018, 11, 836. [Google Scholar] [CrossRef]
- Valentini, L.; Bittolo Bon, S.; Hernández, M.; Lopez-Manchado, M.A.; Pugno, N.M. Nitrile Butadiene Rubber Composites Reinforced with Reduced Graphene Oxide and Carbon Nanotubes Show Superior Mechanical, Electrical and Icephobic Properties. Compos. Sci. Technol. 2018, 166, 109–114. [Google Scholar] [CrossRef]
- El-Nemr, K.F. Effect of Different Curing Systems on the Mechanical and Physico-Chemical Properties of Acrylonitrile Butadiene Rubber Vulcanizates. Mater. Des. 2011, 32, 3361–3369. [Google Scholar] [CrossRef]
- Kapgate, B.P.; Das, C.; Basu, D.; Das, A.; Heinrich, G. Rubber Composites Based on Silane-Treated Stöber Silica and Nitrile Rubber: Interaction of Treated Silica with Rubber Matrix. J. Elastomers Plast. 2015, 47, 248–261. [Google Scholar] [CrossRef]
- de Sousa, F.D.B.; Mantovani, G.L.; Scuracchio, C.H. Mechanical Properties and Morphology of NBR with Different Clays. Polym. Test. 2011, 30, 819–825. [Google Scholar] [CrossRef]
- Balachandran, M.; Devanathan, S.; Muraleekrishnan, R.; Bhagawan, S.S. Optimizing Properties of Nanoclay–Nitrile Rubber (NBR) Composites Using Face Centred Central Composite Design. Mater. Des. 2012, 35, 854–862. [Google Scholar] [CrossRef]
- Sadek, E.M.; El-Nashar, D.E.; Ahmed, S.M. Influence of Modifying Agents of Organoclay on the Properties of Nanocomposites Based on Acrylonitrile Butadiene Rubber. Egypt. J. Pet. 2018, 27, 1177–1185. [Google Scholar] [CrossRef]
- Cho, J.-H. Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-Nitrile Rubber. Bull. Korean Chem. Soc. 2014, 35, 2891–2894. [Google Scholar] [CrossRef][Green Version]
- Al-maamori, M.H.; AL-Zubaidi, A.A.M.; Subeh, A.A. Effect of Carbon Black on Mechanical and Physical Properties of Acrylonitrile Butadiene Rubber (NBR) Composite. Acad. Res. Int. 2015, 6, 28–37. [Google Scholar]
- Shankar, U.; Bhandari, S.; Khastgir, D. Carbon Black-Filled Nitrile Rubber Composite as a Flexible Electrode for Electrochemical Synthesis of Supercapacitive Polyaniline. Polym. Compos. 2019, 40, E1537–E1547. [Google Scholar] [CrossRef]
- Boonbumrung, A.; Sae-oui, P.; Sirisinha, C. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica. J. Nanomater. 2016, 2016, 6391572. [Google Scholar] [CrossRef]
- Tsongas, K.; Tzetzis, D.; Mansour, G. Mechanical and Vibration Isolation Behaviour of Acrylonitrile-Butadiene Rubber/Multi-Walled Carbon Nanotube Composite Machine Mounts. Plast. Rubber Compos. 2017, 46, 458–468. [Google Scholar] [CrossRef]
- Keinänen, P.; Das, A.; Vuorinen, J. Further Enhancement of Mechanical Properties of Conducting Rubber Composites Based on Multiwalled Carbon Nanotubes and Nitrile Rubber by Solvent Treatment. Materials 2018, 11, 1806. [Google Scholar] [CrossRef]
- Suzuki, N.; Ito, M.; Ono, S. Effects of Rubber/Filler Interactions on the Structural Development and Mechanical Properties of NBR/Silica Composites. J. Appl. Polym. Sci. 2005, 95, 74–81. [Google Scholar] [CrossRef]
- Thomas, O.; Namboothiri, V.N.N.; Joseph, R. Feasibility of Silica Loaded NBR as Lining Material for Impactive Gripper. Procedia Technol. 2016, 25, 900–907. [Google Scholar] [CrossRef][Green Version]
- Eyssa, H.M.; Abulyazied, D.E.; Abdulrahman, M.; Youssef, H.A. Mechanical and Physical Properties of Nanosilica/Nitrile Butadiene Rubber Composites Cured by Gamma Irradiation. Egypt. J. Pet. 2018, 27, 383–392. [Google Scholar] [CrossRef]
- Alghamdi, M.N. Titanium Dioxide Reinforced Polypropylene Composites: Preparation and Characterization. Int. J. Eng. Res. Technol. 2016, 5, 633–637. [Google Scholar]
- Anaya-Esparza, L.M.; Villagrán-de la Mora, Z.; Ruvalcaba-Gómez, J.M.; Romero-Toledo, R.; Sandoval-Contreras, T.; Aguilera-Aguirre, S.; Montalvo-González, E.; Pérez-Larios, A. Use of Titanium Dioxide (TiO2) Nanoparticles as Reinforcement Agent of Polysaccharide-Based Materials. Processes 2020, 8, 1395. [Google Scholar] [CrossRef]
- Awang, M.; Mohd, W.R.W. Comparative Studies of Titanium Dioxide and Zinc Oxide as a Potential Filler in Polypropylene Reinforced Rice Husk Composite. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012046. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Ciesielczyk, F.; Nowacka, M.; Jesionowski, T. Influence of Selected Alkoxysilanes on Dispersive Properties and Surface Chemistry of Titanium Dioxide and TiO2–SiO2 Composite Material. J. Nanomater. 2012, 2012, 316173. [Google Scholar] [CrossRef]
- Alharbi, T.; Mohamed, H.F.M.; Saddeek, Y.B.; El-Haseib, A.Y.; Shaaban, K.S. Study of the TiO2 Effect on the Heavy Metals Oxides Borosilicate Glasses Structure Using Gamma-Ray Spectroscopy and Positron Annihilation Technique. Radiat. Phys. Chem. 2019, 164, 108345. [Google Scholar] [CrossRef]
- Abdel-Hady, E.E.; Mohamed, H.F.M.; Abdel-Hamed, M.O.; Gomaa, M.M. Physical and Electrochemical Properties of PVA/TiO2 Nanocomposite Membrane. Adv. Polym. Technol. 2018, 37, 3842–3853. [Google Scholar] [CrossRef]
- Khalid, Y.; Achour, A.; Akram, M.A.; Islam, M. Polycarbonate/Titania Composites Incorporating TiO2 with Different Nanoscale Morphologies for Enhanced Environmental Stress Cracking Resistance in Dioctyl Phthalate. Polymers 2022, 14, 3693. [Google Scholar] [CrossRef]
- Yang, T.-I.; Kofinas, P. Dielectric Properties of Polymer Nanoparticle Composites. Polymer 2007, 48, 791–798. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Y.; Zheng, Q. Mechanical and Thermal Properties of Nanosized Titanium Dioxide Filled Rigid Poly(Vinyl Chloride). Chin. J. Polym. Sci. 2013, 31, 325–332. [Google Scholar] [CrossRef]
- Qi, L.; Ding, Y.; Dong, Q.; Wen, B.; Liu, P.; Wang, F.; Zhang, S.; Yang, M. UV Photodegradation of Polypropylene Thick Bars Containing Rutile-Type TiO2 Nanorods. Chin. J. Polym. Sci. 2014, 32, 834–843. [Google Scholar] [CrossRef]
- Nasrin, R.; Seema, S.; Gafur, M.A.; Bhuiyan, A.H. Study of Dielectric Behavior of Titanium Dioxide-Filled Polypropylene Composites. Am. J. Mater. Synth. Process. 2018, 3, 56–61. [Google Scholar] [CrossRef]
- Madidi, F.; Momen, G.; Farzaneh, M. Dielectric Properties of TiO2/Silicone Rubber Micro- and Nanocomposites. Adv. Mater. Sci. Eng. 2018, 2018, 4682076. [Google Scholar] [CrossRef]
- Seentrakoon, B.; Junhasavasdikul, B.; Chavasiri, W. Enhanced UV-Protection and Antibacterial Properties of Natural Rubber/Rutile-TiO2 Nanocomposites. Polym. Degrad. Stab. 2013, 98, 566–578. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Medlenová, E.; Dosoudil, R.; Hudec, I. Application of Peroxide Curing Systems in Cross-Linking of Rubber Magnets Based on NBR and Barium Ferrite. Adv. Mater. Sci. Eng. 2019, 2019, 1640548. [Google Scholar] [CrossRef]
- Kaewsakul, W.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Optimization of Mixing Conditions for Silica-Reinforced Natural Rubber Tire Tread Compounds. Rubber Chem. Technol. 2012, 85, 277–294. [Google Scholar] [CrossRef]
- Phuhiangpa, N.; Ponloa, W.; Phongphanphanee, S.; Smitthipong, W. Performance of Nano- and Microcalcium Carbonate in Uncrosslinked Natural Rubber Composites: New Results of Structure–Properties Relationship. Polymers 2020, 12, 2002. [Google Scholar] [CrossRef]
- Hanawa, T. A Comprehensive Review of Techniques for Biofunctionalization of Titanium. J. Periodontal. Implant Sci. 2011, 41, 263. [Google Scholar] [CrossRef] [PubMed]
- Pivkina, A.N.; Muravyev, N.V.; Monogarov, K.A.; Fomenkov, I.V.; Schoonman, J. Catalysis of HMX Decomposition and Combustion. In Energetic Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 193–230. [Google Scholar] [CrossRef]
- Chenal, J.-M.; Gauthier, C.; Chazeau, L.; Guy, L.; Bomal, Y. Parameters Governing Strain Induced Crystallization in Filled Natural Rubber. Polymer 2007, 48, 6893–6901. [Google Scholar] [CrossRef]
- Bokobza, L. Mechanical and Electrical Properties of Elastomer Nanocomposites Based on Different Carbon Nanomaterials. C 2017, 3, 10. [Google Scholar] [CrossRef]
- El-Nashar, D.E.; Mansour, S.H.; Girgis, E. Nickel and Iron Nano-Particles in Natural Rubber Composites. J. Mater. Sci. 2006, 41, 5359–5364. [Google Scholar] [CrossRef]
- Hang, L.T.; Viet, D.Q.; Linh, N.P.D.; Doan, V.A.; Dang, H.-L.T.; Dao, V.-D.; Tuan, P.A. Utilization of Leather Waste Fibers in Polymer Matrix Composites Based on Acrylonitrile-Butadiene Rubber. Polymers 2020, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.A.M.; Othman, N. Effect of Filler Loading on Curing Characteristic and Tensile Properties of Palygorskite Natural Rubber Nanocomposites. Procedia Chem. 2016, 19, 351–358. [Google Scholar] [CrossRef]
- Mente, P.; Motaung, T.E.; Hlangothi, S.P. Natural Rubber and Reclaimed Rubber Composites–A Systematic Review. Polym. Sci. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments. JPS 2018, 29, 141–165. [Google Scholar] [CrossRef]
- Hayeemasae, N.; Rathnayake, W.G.I.U.; Ismail, H. Nano-Sized TiO2 -Reinforced Natural Rubber Composites Prepared by Latex Compounding Method. J. Vinyl. Addit. Technol. 2017, 23, 200–209. [Google Scholar] [CrossRef]
- Chokanandsombat, Y.; Sirisinha, C. MgO and ZnO as Reinforcing Fillers in Cured Polychloroprene Rubber. J. Appl. Polym. Sci. 2013, 128, 2533–2540. [Google Scholar] [CrossRef]
- Hamdan, S.; Hasihim, D.M.A.; Yusop, M. Dynamic Mechanical Thermal Analysis (DMTA) of Thermoplastic Natural Rubber (TPNR) Barium Ferrite (BaFe12O19) Composites. AJSTD 2017, 21, 69. [Google Scholar] [CrossRef]
- Rico, A.; Outón, P.R.; Salazar, A.; Benavente, R.; Rodríguez, J. Strain Rate and Loading Modes in DMTA Experiments on Ethylene/Propylene Block Copolymers. Mech. Time-Depend. Mater. 2014, 18, 407–422. [Google Scholar] [CrossRef][Green Version]
- Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis in the Analysis of Polymers and Rubbers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–33. [Google Scholar] [CrossRef]
- Komalan, C.; George, K.E.; Kumar, P.A.S.; Varughese, K.T.; Thomas, S. Dynamic Mechanical Analysis of Binary and Ternary Polymer Blends Based on Nylon Copolymer/EPDM Rubber and EPM Grafted Maleic Anhydride Compatibilizer. Express Polym. Lett. 2007, 1, 641–653. [Google Scholar] [CrossRef]
- Badr, A.M.; Elshaikh, H.A.; Ashraf, I.M. Impacts of Temperature and Frequency on the Dielectric Properties for Insight into the Nature of the Charge Transports in the Tl2S Layered Single Crystals. JMP 2011, 2, 12–25. [Google Scholar] [CrossRef]
- Nayak, S.; Rahaman, M.; Pandey, A.K.; Setua, D.K.; Chaki, T.K.; Khastgir, D. Development of Poly(Dimethylsiloxane)-Titania Nanocomposites with Controlled Dielectric Properties: Effect of Heat Treatment of Titania on Electrical Properties. J. Appl. Polym. Sci. 2013, 127, 784–796. [Google Scholar] [CrossRef]
- Ward, A.; El-Sabbagh, S.H.; El-Ghaffar, M.A.A. Studies on the Dielectric and Physical Properties of Phosphate Pigment/Rubber Composites. KGK Rubberpoint 2013, 6, 29–40. [Google Scholar]
- Tu, L.; Xiao, Q.; Wei, R.; Liu, X. Fabrication and Enhanced Thermal Conductivity of Boron Nitride and Polyarylene Ether Nitrile Hybrids. Polymers 2019, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Supplier | phr | Internal Mixer | Time (min) |
---|---|---|---|---|
NBR | Nantex public Co., Ltd. (Kaohsiung, Taiwan) | 100 |
| 0 |
Sulphur | Vessel chemical public Co., Ltd. (Bangkok, Thailand) | 1.5 |
| 2 |
Zinc oxide | Bossoftical public Co., Ltd. (Songkla, Thailand) | 5 |
| 4 |
Stearic acid | Bossoftical public Co., Ltd. (Songkla, Thailand) | 2 |
| 6 |
MBTS | Vessel chemical public Co., Ltd. (Bangkok, Thailand) | 1.5 |
| 7 |
TiO2 | Labchem public Co., Ltd. (Surat Thani, Thailand) | 0–110 |
| 10 |
| 12 |
Sample | ML | MH | MH − ML | ts1 | tc90 | CRI | ML (1 + 4) 100 °C (MU) |
---|---|---|---|---|---|---|---|
(dN.m) | (dN.m) | (dN.m) | (min) | (min) | (min−1) | ||
Pure NBR | 1.06 | 12.15 | 11.09 | 3.17 | 9.68 | 15.35 | 37.80 |
NBR/TiO2 30 | 1.36 | 16.54 | 15.18 | 2.03 | 6.00 | 25.21 | 46.10 |
NBR/TiO2 70 | 2.11 | 18.98 | 16.87 | 1.35 | 5.50 | 24.10 | 58.40 |
NBR/TiO2 90 | 3.00 | 22.20 | 19.20 | 1.47 | 5.90 | 22.56 | 64.30 |
NBR/TiO2 110 | 1.91 | 16.40 | 14.49 | 1.35 | 5.57 | 23.72 | 70.20 |
Sample | σb (MPa) | εb (%) | M100 (MPa) | M300 (MPa) | Reinforcing Index | Hardness (Shore A) |
---|---|---|---|---|---|---|
Pure NBR | 2.82 ± 0.11 | 550 ± 15 | 0.71 ± 0.01 | 1.20 ± 0.04 | 1.69 | 35 |
NBR/TiO2 30 | 3.77 ± 0.16 | 565 ± 15 | 1.01 ± 0.07 | 2.08 ± 0.05 | 2.06 | 45 |
NBR/TiO2 70 | 4.16 ± 0.18 | 621 ± 14 | 1.21 ± 0.02 | 2.59 ± 0.05 | 2.14 | 48 |
NBR/TiO2 90 | 5.68 ± 0.13 | 768 ± 11 | 1.45 ± 0.01 | 2.79 ± 0.04 | 1.92 | 49 |
NBR/TiO2 110 | 5.24 ± 0.18 | 699 ± 19 | 1.50 ± 0.03 | 2.87 ± 0.03 | 1.91 | 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chueangchayaphan, W.; Luangchuang, P.; Chueangchayaphan, N. High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites. Polymers 2022, 14, 5267. https://doi.org/10.3390/polym14235267
Chueangchayaphan W, Luangchuang P, Chueangchayaphan N. High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites. Polymers. 2022; 14(23):5267. https://doi.org/10.3390/polym14235267
Chicago/Turabian StyleChueangchayaphan, Wannarat, Piyawadee Luangchuang, and Narong Chueangchayaphan. 2022. "High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites" Polymers 14, no. 23: 5267. https://doi.org/10.3390/polym14235267
APA StyleChueangchayaphan, W., Luangchuang, P., & Chueangchayaphan, N. (2022). High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites. Polymers, 14(23), 5267. https://doi.org/10.3390/polym14235267