Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness
Abstract
:1. Introduction, Motivation and Background
2. Modeling Strategy
2.1. Tunneling Resistance Model
2.2. Material Properties
2.3. Library of Realizations
2.4. Incorporating CNT Waviness
2.5. Problem Setup and Computing Effective Estimates
Solution Scheme and Algorithm
3. Results and Discussion
3.1. Estimates of Effective Mechanical Stiffness with Straight CNTs
3.1.1. Effect of Orientation
3.1.2. Estimates for Engineering Constants
3.1.3. Comparison to Other Studies in the Literature
3.2. Estimates of Initial Electrical Conductivity with Straight CNTs
3.2.1. Effect of Orientation and Studying Electrical Percolation
3.2.2. Comparison to Other Studies in the Literature
3.3. Estimates of Nanocomposite Piezoresistivity with Straight CNTs
3.3.1. Effect of Orientation and Percolation Transition Region
- CNT volume fraction.
- CNT dispersion and probability of percolation.
- Probability of network redundancy.
- Mechanical deformation resulting in changes in the current carrying capacity, which varies based on loading direction ( vs. directions depending upon the orientation condition).
- CNT inherent piezoresistivity, which depends upon mechanical loading and thereby the loading direction ( vs. directions depending upon the orientation condition).
- Orientation condition.
3.3.2. Comparison to Other Studies in the Literature
3.4. Electrical and Mechanical Properties with Wavy CNTs
3.4.1. Engineering Constants
3.4.2. Comparing Initial Electrical Conductivity
3.4.3. Comparing Nanocomposite Piezoresistivity
4. Summary of Results
- Mechanical reinforcement in the direction increased with the degree of alignment ( aligned > imperfectly aligned > randomly oriented) for all CNT volume fractions. On the other hand, mechanical reinforcement in the direction increased with the degree of misalignment (randomly oriented > imperfectly aligned > aligned) for all CNT volume fraction. This was found to be true for both the stiffness terms and and for the engineering constants and . With increasing CNT volume fraction, the difference in the stiffness estimates of the aligned case with respect to the randomly oriented case grew larger. At the final simulated CNT volume fraction of 5.04%, this difference for was 72.80% and for was −15.16%.
- The estimates for the initial electrical conductivity terms and increased by several orders of magnitude to values higher than with increasing CNT volume fraction. The enhancement in was found to be consistently larger with increase in the degree of alignment and vice versa for for all CNT volume fractions. At the final simulated CNT volume fraction of 5.04%, and for the aligned case were 32.54% larger and 85.38% smaller than their corresponding values for the randomly oriented case.
- Percolation transition regions or PTR were determined using a threshold measure. PTR varied from one orientation condition to the next and was also different in the and directions for the aligned and imperfectly aligned cases. The transitional behavior of the electrical percolation phenomena was co-related with histograms and skewness-kurtosis plots.
- The piezoresistive terms evolved in a more complicated manner than the stiffness or conductivity terms. Piezoresistivity was found to depend upon a number of different factors such as (i) CNT volume fraction, (ii) CNT dispersion, (iii) network redundancy, and (iv) inherent CNT piezoresistivity. The effect of piezoresistivity was found to be stronger in the direction () with increasing alignment ( aligned > imperfectly aligned > randomly oriented) and vice versa for the direction (). The largest difference in values for and for aligned case with respect to the randomly oriented case is found at 5.04% CNT volume fraction, with values of 117.91% and −86.21%, respectively.
- The effect of CNT waviness proved to be insignificant when compared to the effects of alignment evidenced by the similarity in the obtained electro-mechanical properties for the randomly oriented straight case and the randomly oriented wavy case.
- Comparing the percolation transition region for the randomly oriented straight CNTs using three different barrier potential values of , and with experimentally reported values of percolation threshold revealed that the range from case matched the observations more closely.
- All electro-mechanical properties obtained for the randomly oriented straight and randomly oriented wavy cases exhibited isotropy, i.e., confirming the unbiased nature of the algorithm employed for generating nanocomposite realizations.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Kumar, S. Polymer/carbon nanotube nano composite fibers—A review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087. [Google Scholar] [CrossRef] [PubMed]
- Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Lusti, H.R.; Gusev, A.A. Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Model. Simul. Mater. Sci. Eng. 2004, 12, S107. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Cheng, H.K.F.; Cai, J.; Li, L.; Chan, S.H.; Zhao, J.; Yu, S. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater. Chem. Phys. 2009, 117, 313–320. [Google Scholar] [CrossRef]
- Sengezer, E.C.; Seidel, G.D. Structural health monitoring of nanocomposite bonded energetic materials through piezoresistive response. AIAA J. 2017, 56, 1225–1238. [Google Scholar] [CrossRef]
- Shirodkar, N.; Rocker, S.; Seidel, G. Strain and damage sensing of polymer bonded mock energetics via piezoresistivity from carbon nanotube networks. Smart Mater. Struct. 2019, 28, 104006. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Talamadupula, K.K.; Seidel, G.D. Statistical analysis of effective electro-mechanical properties and percolation behavior of aligned carbon nanotube/polymer nanocomposites via computational micromechanics. Comput. Mater. Sci. 2021, 197, 110616. [Google Scholar] [CrossRef]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Bartholome, C.; Poulin, P.; Marioli-Riga, Z. Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 2010, 70, 260–271. [Google Scholar] [CrossRef]
- Zhang, W.; Suhr, J.; Koratkar, N. Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J. Nanosci. Nanotechnol. 2006, 6, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Tallman, T.; Gungor, S.; Wang, K.; Bakis, C.E. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Mater. Struct. 2014, 23, 045034. [Google Scholar] [CrossRef]
- Tallman, T.N.; Semperlotti, F.; Wang, K. Enhanced delamination detection in multifunctional composites through nanofiller tailoring. J. Intell. Mater. Syst. Struct. 2015, 26, 2565–2576. [Google Scholar] [CrossRef]
- Prakash, N.; Seidel, G.D. Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (NCBX). Eng. Fract. Mech. 2017, 177, 180–202. [Google Scholar] [CrossRef]
- Prakash, N.; Seidel, G.D. Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics. Model. Simul. Mater. Sci. Eng. 2017, 26, 015003. [Google Scholar] [CrossRef]
- Talamadupula, K.K.; Povolny, S.J.; Prakash, N.; Seidel, G.D. Mesoscale strain and damage sensing in nanocomposite bonded energetic materials under low velocity impact with frictional heating via peridynamics. Model. Simul. Mater. Sci. Eng. 2020, 28, 085011. [Google Scholar] [CrossRef]
- Talamadupula, K.K.; Povolny, S.; Prakash, N.; Seidel, G.D. Piezoresistive detection of simulated hotspots and the effects of low velocity impact at the mesoscale in nanocomposite bonded energetic materials via multiphysics peridynamics modeling. Comput. Mater. Sci. 2021, 188, 110211. [Google Scholar] [CrossRef]
- Chaurasia, A.K.; Sengezer, E.C.; Talamadupula, K.K.; Povolny, S.; Seidel, G.D. Experimental characterization and computational modeling of deformation and damage sensing through the piezoresistive response of nanocomposite bonded surrogate energetic materials. J. Multifunct. Compos. 2014, 2, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.L.; Mai, Y.W.; Zhou, X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R Rep. 2005, 49, 89–112. [Google Scholar] [CrossRef]
- Fisher, F.; Bradshaw, R.; Brinson, L. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 2002, 80, 4647–4649. [Google Scholar] [CrossRef]
- Dastgerdi, J.N.; Marquis, G.; Salimi, M. The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 2013, 86, 164–169. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos. Sci. Technol. 2018, 155, 252–260. [Google Scholar] [CrossRef]
- Avilés, F.; Oliva-Avilés, A.I.; Cen-Puc, M. Piezoresistivity, strain, and damage self-sensing of polymer composites filled with carbon nanostructures. Adv. Eng. Mater. 2018, 20, 1701159. [Google Scholar] [CrossRef]
- Wichmann, M.H.; Buschhorn, S.T.; Gehrmann, J.; Schulte, K. Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys. Rev. B 2009, 80, 245437. [Google Scholar] [CrossRef]
- Chaurasia, A.K.; Seidel, G.D. Computational micromechanics analysis of electron-hopping-induced conductive paths and associated macroscale piezoresistive response in carbon nanotube—Polymer nanocomposites. J. Intell. Mater. Syst. Struct. 2014, 25, 2141–2164. [Google Scholar] [CrossRef]
- Ren, X.; Seidel, G.D. Computational micromechanics modeling of inherent piezoresistivity in carbon nanotube—Polymer nanocomposites. J. Intell. Mater. Syst. Struct. 2013, 24, 1459–1483. [Google Scholar] [CrossRef]
- Simmons, J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590. [Google Scholar] [CrossRef]
- Hu, B.; Hu, N.; Li, Y.; Akagi, K.; Yuan, W.; Watanabe, T.; Cai, Y. Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 2012, 7, 402. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Zhang, Y. Single, Double, MultiWall Carbon Nanotube Properties & Applications. 2020. Available online: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/single-double-multi-walled-carbon-nanotubes.html (accessed on 13 June 2020).
- Karimi, M.; Montazeri, A.; Ghajar, R. On the elasto-plastic behavior of CNT-polymer nanocomposites. Compos. Struct. 2017, 160, 782–791. [Google Scholar] [CrossRef]
- Chou, T.W. Microstructural design of fiber composites. NASA STI Recon Tech. Rep. A 1992, 92, 50452. [Google Scholar]
- Chen, X.; Alian, A.; Meguid, S. Modeling of CNT-reinforced nanocomposite with complex morphologies using modified embedded finite element technique. Compos. Struct. 2019, 227, 111329. [Google Scholar] [CrossRef]
- Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C. Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Seidel, G.D. Computational micromechanics modeling of piezoresistivity in carbon nanotube—Polymer nanocomposites. Compos. Interfaces 2013, 20, 693–720. [Google Scholar] [CrossRef]
- Sengezer, E.C.; Seidel, G.D.; Bodnar, R.J. Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites. Smart Mater. Struct. 2017, 26, 095027. [Google Scholar] [CrossRef]
- Chaurasia, A.; Seidel, G. Computational micromechanics analysis of electron hopping and interfacial damage induced piezoresistive response in carbon nanotube-polymer nanocomposites subjected to cyclic loading conditions. Eur. J. Mech.-A Solids 2017, 64, 112–130. [Google Scholar] [CrossRef]
- Ren, X.; Chaurasia, A.K.; Seidel, G.D. Concurrent multiscale modeling of coupling between continuum damage and piezoresistivity in CNT-polymer nanocomposites. Int. J. Solids Struct. 2016, 96, 340–354. [Google Scholar] [CrossRef]
- Ren, X.; Chaurasia, A.K.; Oliva-Avilés, A.I.; Ku-Herrera, J.J.; Seidel, G.D.; Avilés, F. Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer nanocomposites via 3D computational multiscale micromechanics methods. Smart Mater. Struct. 2015, 24, 065031. [Google Scholar] [CrossRef]
- Chaurasia, A.K.; Ren, X.; Seidel, G.D. Computational micromechanics analysis of electron hopping and interfacial damage induced piezoresistive response in carbon nanotube-polymer nanocomposites. Smart Mater. Struct. 2014, 23, 075023. [Google Scholar] [CrossRef]
- Talamadupula, K.K.; Chaurasia, A.K.; Seidel, G.D. 2-scale hierarchical multiscale modeling of piezoresistive response in polymer nanocomposite bonded explosives. In Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Colorado Springs, CO, USA, 21–23 September 2015; American Society of Mechanical Engineers. p. V001T02A012. [Google Scholar]
- K. Talamadupula, K.; Chaurasia, A.; Seidel, G. 2-Scale Hierarchical Multiscale Modeling of Piezoresistive and Damage Response in Polymer Nanocomposite Bonded Explosive. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016; p. V001T02A011. [Google Scholar] [CrossRef]
- Talamadupula, K.K.; Chaurasia, A.K.; Seidel, G.D. Multiscale Modeling of Effective Piezoresistivity and Damage Response in Nanocomposite Bonded Explosives. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TE, USA, 9–13 January 2017; p. 0348. [Google Scholar]
- Talamadupula, K.K.; Seidel, G.D. Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 0903. [Google Scholar]
- Anumandla, V.; Gibson, R.F. A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2178–2185. [Google Scholar] [CrossRef]
- Fisher, F.; Bradshaw, R.; Brinson, L.C. Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 2003, 63, 1689–1703. [Google Scholar] [CrossRef]
- Shao, L.; Luo, R.; Bai, S.; Wang, J. Prediction of effective moduli of carbon nanotube–reinforced composites with waviness and debonding. Compos. Struct. 2009, 87, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Tange, O. GNU Parallel—The Command-Line Power Tool. USENIX Mag. 2011, 36, 42–47. [Google Scholar] [CrossRef]
- Rahmat, M.; Hubert, P. Carbon nanotube—Polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 2011, 72, 72–84. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, J.S.; Lim, B.K.; Kim, S.O. Polymer/carbon nanotube nanocomposites via noncovalent grafting with end-functionalized polymers. J. Appl. Polym. Sci. 2008, 110, 2345–2351. [Google Scholar] [CrossRef]
- Koval’chuk, A.A.; Shevchenko, V.G.; Shchegolikhin, A.N.; Nedorezova, P.M.; Klyamkina, A.N.; Aladyshev, A.M. Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites. Macromolecules 2008, 41, 7536–7542. [Google Scholar] [CrossRef]
- Velasco-Santos, C.; Martínez-Hernández, A.L.; Fisher, F.T.; Ruoff, R.; Castaño, V.M. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 2003, 15, 4470–4475. [Google Scholar] [CrossRef]
- Sepúlveda, A.; de Villoria, R.G.; Viana, J.; Pontes, A.; Wardle, B.; Rocha, L.A. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites. Nanoscale 2013, 5, 4847–4854. [Google Scholar] [CrossRef]
- Pecastaings, G.; Delhaes, P.; Derre, A.; Saadaoui, H.; Carmona, F.; Cui, S. Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior. J. Nanosci. Nanotechnol. 2004, 4, 838–843. [Google Scholar] [CrossRef]
- Cui, S.; Canet, R.; Derre, A.; Couzi, M.; Delhaes, P. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon 2003, 41, 797–809. [Google Scholar] [CrossRef]
- Yuen, S.M.; Ma, C.C.M.; Wu, H.H.; Kuan, H.C.; Chen, W.J.; Liao, S.H.; Hsu, C.W.; Wu, H.L. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotubeand epoxy composites. J. Appl. Polym. Sci. 2007, 103, 1272–1278. [Google Scholar] [CrossRef]
- Sandler, J.; Kirk, J.; Kinloch, I.; Shaffer, M.; Windle, A. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. [Google Scholar] [CrossRef]
- Bai, J.; Allaoui, A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos. Part A Appl. Sci. Manuf. 2003, 34, 689–694. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, T.S.; Do Choi, H.; Kwon, J.H.; Chung, Y.C.; Yoon, H.G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005, 43, 23–30. [Google Scholar] [CrossRef]
- Ku-Herrera, J.; Avilés, F. Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon 2012, 50, 2592–2598. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, C.; Scholl, J.A.; Brazin, A.H.; Holloway, N.M.; High, J.W.; Lowther, S.E.; Harrison, J.S. Piezoresistive characteristics of single wall carbon nanotube/polyimide nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 994–1003. [Google Scholar] [CrossRef]
- Aviles, F.; May-Pat, A.; Canche-Escamilla, G.; Rodriguez-Uicab, O.; Ku-Herrera, J.J.; Duarte-Aranda, S.; Uribe-Calderon, J.; Gonzalez-Chi, P.I.; Arronche, L.; La Saponara, V. Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J. Intell. Mater. Syst. Struct. 2016, 27, 92–103. [Google Scholar] [CrossRef]
- Park, M.; Kim, H.; Youngblood, J.P. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 2008, 19, 055705. [Google Scholar] [CrossRef]
- Bautista-Quijano, J.; Avilés, F.; Aguilar, J.; Tapia, A. Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens. Actuators A Phys. 2010, 159, 135–140. [Google Scholar] [CrossRef]
- Zetina-Hernández, O.; Duarte-Aranda, S.; May-Pat, A.; Canché-Escamilla, G.; Uribe-Calderon, J.; Gonzalez-Chi, P.; Avilés, F. Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J. Mater. Sci. 2013, 48, 7587–7593. [Google Scholar] [CrossRef]
- Herasati, S.; Zhang, L. A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites. Compos. Sci. Technol. 2014, 100, 136–142. [Google Scholar] [CrossRef]
Pure matrix (no electron hopping): Epoxy | |
---|---|
E = 3.00 GPa | = 0.39 |
if | if |
Multi-walled carbon nanotube | |
E = 900 GPa | = 0.3 |
CNT Length = 1 | CNT Diameter = 20 nm |
if | if |
Barrier Potential | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talamadupula, K.K.; Seidel, G. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness. Polymers 2022, 14, 5094. https://doi.org/10.3390/polym14235094
Talamadupula KK, Seidel G. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness. Polymers. 2022; 14(23):5094. https://doi.org/10.3390/polym14235094
Chicago/Turabian StyleTalamadupula, Krishna Kiran, and Gary Seidel. 2022. "Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness" Polymers 14, no. 23: 5094. https://doi.org/10.3390/polym14235094
APA StyleTalamadupula, K. K., & Seidel, G. (2022). Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness. Polymers, 14(23), 5094. https://doi.org/10.3390/polym14235094