Swelling and Collapse of Cylindrical Polyelectrolyte Microgels
Abstract
1. Introduction
2. Model and Simulation Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plamper, F.A.; Richtering, W. Functional Microgels and Microgel Systems. Acc. Chem. Res. 2017, 50, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Senff, H.; Richtering, W. Temperature Sensitive Microgel Suspensions: Colloidal Phase Behavior and Rheology of Soft Spheres. J. Chem. Phys. 1999, 111, 1705–1711. [Google Scholar] [CrossRef]
- Schroeder, R.; Rudov, A.A.; Lyon, L.A.; Richtering, W.; Pich, A.; Potemkin, I.I. Electrostatic Interactions and Osmotic Pressure of Counterions Control the PH-Dependent Swelling and Collapse of Polyampholyte Microgels with Random Distribution of Ionizable Groups. Macromolecules 2015, 48, 5914–5927. [Google Scholar] [CrossRef]
- Backes, S.; Witt, M.U.; Roeben, E.; Kuhrts, L.; Aleed, S.; Schmidt, A.M.; von Klitzing, R. Loading of PNIPAM Based Microgels with CoFe2O4 Nanoparticles and Their Magnetic Response in Bulk and at Surfaces. J. Phys. Chem. B 2015, 119, 12129–12137. [Google Scholar] [CrossRef] [PubMed]
- Gelissen, A.P.H.; Scotti, A.; Turnhoff, S.K.; Janssen, C.; Radulescu, A.; Pich, A.; Rudov, A.A.; Potemkin, I.I.; Richtering, W. An Anionic Shell Shields a Cationic Core Allowing for Uptake and Release of Polyelectrolytes within Core–Shell Responsive Microgels. Soft Matter 2018, 14, 4287–4299. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, M.; Dargel, C.; Meier, L.; Brändel, T.; Hellweg, T. Smart Microgels as Drug Delivery Vehicles for the Natural Drug Aescin: Uptake, Release and Interactions. Colloid Polym. Sci. 2020, 298, 505–518. [Google Scholar] [CrossRef]
- Wiese, S.; Tsvetkova, Y.; Daleiden, N.J.E.; Spieß, A.C.; Richtering, W. Microgel Stabilized Emulsions: Breaking on Demand. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 193–199. [Google Scholar] [CrossRef]
- Zhang, T.; Ngai, T. One-Step Formation of Double Emulsions Stabilized by PNIPAM-Based Microgels: The Role of Co-Monomer. Langmuir 2021, 37, 1045–1053. [Google Scholar] [CrossRef]
- Yang, L.Q.; Hao, M.M.; Wang, H.Y.; Zhang, Y. Amphiphilic Polymer-Ag Composite Microgels with Tunable Catalytic Activity and Selectivity. Colloid Polym. Sci. 2015, 293, 2405–2417. [Google Scholar] [CrossRef]
- Sabadasch, V.; Dirksen, M.; Fandrich, P.; Cremer, J.; Biere, N.; Anselmetti, D.; Hellweg, T. Pd Nanoparticle-Loaded Smart Microgel-Based Membranes as Reusable Catalysts. ACS Appl. Mater. Interfaces 2022, 14, 49181–49188. [Google Scholar] [CrossRef]
- Berger, S.; Singh, R.; Sudha, J.D.; Adler, H.J.; Pich, A. Microgel/Clay Nanohybrids as Responsive Scavenger Systems. Polymer 2010, 51, 3829–3835. [Google Scholar] [CrossRef]
- Saha, P.; Santi, M.; Emondts, M.; Roth, H.; Rahimi, K.; Großkurth, J.; Ganguly, R.; Wessling, M.; Singha, N.K.; Pich, A. Stimuli-Responsive Zwitterionic Core–Shell Microgels for Antifouling Surface Coatings. ACS Appl. Mater. Interfaces 2020, 12, 58223–58238. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.C.; Gehlen, D.B.; Haraszti, T.; Köhler, J.; Licht, C.J.; De Laporte, L. Biofunctionalized Aligned Microgels Provide 3D Cell Guidance to Mimic Complex Tissue Matrices. Biomaterials 2018, 163, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Balaceanu, A.; Verkh, Y.; Kehren, D.; Tillmann, W.; Pich, A. Thermoresponsive Core-Shell Microgels. Synthesis and Characterisation. Z. für Phys. Chem. 2014, 228, 253–267. [Google Scholar] [CrossRef]
- Crespy, D.; Zuber, S.; Turshatov, A.; Landfester, K.; Popa, A.M. A Straightforward Synthesis of Fluorescent and Temperature-Responsive Nanogels. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1043–1048. [Google Scholar] [CrossRef]
- Krüger, A.J.D.; Köhler, J.; Cichosz, S.; Rose, J.C.; Gehlen, D.B.; Haraszti, T.; Möller, M.; De Laporte, L. A Catalyst-Free, Temperature Controlled Gelation System for in-Mold Fabrication of Microgels. Chem. Commun. 2018, 54, 6943–6946. [Google Scholar] [CrossRef]
- Seiffert, S.; Weitz, D.A. Microfluidic Fabrication of Smart Microgels from Macromolecular Precursors. Polymer 2010, 51, 5883–5889. [Google Scholar] [CrossRef][Green Version]
- Rudyak, V.Y.; Kozhunova, E.Y.; Chertovich, A.V. Towards the Realistic Computer Model of Precipitation Polymerization Microgels. Sci. Rep. 2019, 9, 13052. [Google Scholar] [CrossRef]
- Krüger, A.J.D.; Bakirman, O.; Guerzoni, L.P.B.; Jans, A.; Gehlen, D.B.; Rommel, D.; Haraszti, T.; Kuehne, A.J.C.; De Laporte, L. Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness. Adv. Mater. 2019, 31, 1903668. [Google Scholar] [CrossRef]
- Crassous, J.J.; Mihut, A.M.; Månsson, L.K.; Schurtenberger, P. Anisotropic Responsive Microgels with Tuneable Shape and Interactions. Nanoscale 2015, 7, 15971–15982. [Google Scholar] [CrossRef]
- Nickel, A.C.; Scotti, A.; Houston, J.E.; Ito, T.; Crassous, J.; Pedersen, J.S.; Richtering, W. Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness. Nano Lett. 2019, 19, 8161–8170. [Google Scholar] [CrossRef] [PubMed]
- Nickel, A.C.; Kratzenberg, T.; Bochenek, S.; Schmidt, M.M.; Rudov, A.A.; Falkenstein, A.; Potemkin, I.I.; Crassous, J.J.; Richtering, W. Anisotropic Microgels Show Their Soft Side. Langmuir 2022, 38, 5063–5080. [Google Scholar] [CrossRef] [PubMed]
- Wolff, H.J.M.; Linkhorst, J.; Göttlich, T.; Savinsky, J.; Krüger, A.J.D.; De Laporte, L.; Wessling, M. Soft Temperature-Responsive Microgels of Complex Shape in Stop-Flow Lithography. Lab Chip 2020, 20, 285–295. [Google Scholar] [CrossRef]
- Rose, J.C.; Cámara-Torres, M.; Rahimi, K.; Köhler, J.; Möller, M.; De Laporte, L. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. Nano Lett. 2017, 17, 3782–3791. [Google Scholar] [CrossRef] [PubMed]
- Zholudev, S.I.; Gumerov, R.A.; Larina, A.A.; Potemkin, I.I. Swelling, Collapse and Ordering of Rod-like Microgels in Solution: Computer Simulation Studies. J. Colloid Interface Sci. 2023, 629, 270–278. [Google Scholar] [CrossRef]
- Toxvaerd, S.; Dyre, J.C. Role of the First Coordination Shell in Determining the Equilibrium Structure and Dynamics of Simple Liquids. J. Chem. Phys. 2011, 135, 134501. [Google Scholar] [CrossRef] [PubMed]
- Rumyantsev, A.M.; Rudov, A.A.; Potemkin, I.I. Communication: Intraparticle Segregation of Structurally Homogeneous Polyelectrolyte Microgels Caused by Long-Range Coulomb Repulsion. J. Chem. Phys. 2015, 142, 171105. [Google Scholar] [CrossRef]
- Stevens, M.J.; Kremer, K. The Nature of Flexible Linear Polyelectrolytes in Salt Free Solution: A Molecular Dynamics Study. J. Chem. Phys. 1995, 103, 1669–1690. [Google Scholar] [CrossRef]
- Jeon, J.; Dobrynin, A.V. Molecular Dynamics Simulations of Polyelectrolyte-Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration. J. Phys. Chem. B 2006, 110, 24652–24665. [Google Scholar] [CrossRef]
- Tiwari, R.; Hönders, D.; Schipmann, S.; Schulte, B.; Das, P.; Pester, C.W.; Klemradt, U.; Walther, A. A Versatile Synthesis Platform to Prepare Uniform, Highly Functional Microgels via Click-Type Functionalization of Latex Particles. Macromolecules 2014, 47, 2257–2267. [Google Scholar] [CrossRef]
- Kremer, K.; Grest, G.S. Dynamics of Entangled Linear Polymer Melts: A Molecular-dynamics Simulation. J. Chem. Phys. 1990, 92, 5057–5086. [Google Scholar] [CrossRef]
- LAMMPS Molecular Dynamics Simulator. Available online: http://Lammps.Sandia.Gov/ (accessed on 20 October 2022).
- Hockney, R.; Eastwood, J. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Kobayashi, H.; Halver, R.; Sutmann, G.; Winkler, R.G. Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results. Polymers 2017, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Del Monte, G.; Ninarello, A.; Camerin, F.; Rovigatti, L.; Gnan, N.; Zaccarelli, E. Numerical Insights on Ionic Microgels: Structure and Swelling Behaviour. Soft Matter 2019, 15, 8113–8128. [Google Scholar] [CrossRef]
- Kratz, K.; Hellweg, T.; Eimer, W. Influence of Charge Density on the Swelling of Colloidal Poly(N-Isopropylacrylamide-Co-Acrylic Acid) Microgels. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 170, 137–149. [Google Scholar] [CrossRef]
- Su, W.; Yang, M.; Zhao, K.; Ngai, T. Influence of Charged Groups on the Structure of Microgel and Volume Phase Transition by Dielectric Analysis. Macromolecules 2016, 49, 7997–8008. [Google Scholar] [CrossRef]
- Quesada-Pérez, M.; Maroto-Centeno, J.A.; Forcada, J.; Hidalgo-Alvarez, R. Gel Swelling Theories: The Classical Formalism and Recent Approaches. Soft Matter 2011, 7, 10536. [Google Scholar] [CrossRef]
- Potemkin, I.I.; Khokhlov, A.R. Nematic Ordering in Dilute Solutions of Rodlike Polyelectrolytes. J. Chem. Phys. 2004, 120, 10848–10851. [Google Scholar] [CrossRef] [PubMed]
- Kundagrami, A.; Kumar, R.; Muthukumar, M. Simulations and Theories of Single Polyelectrolyte Chains. In Modeling and Simulation in Polymers; Wiley: Hoboken, NJ, USA, 2010; pp. 247–341. [Google Scholar] [CrossRef]
- Noguchi, H.; Yoshikawa, K. Morphological Variation in a Collapsed Single Homopolymer Chain. J. Chem. Phys. 1998, 109, 5070–5077. [Google Scholar] [CrossRef]
- Khokhlov, A.R.; Yu, A.; Grosberg, V.S.P. Statistical Physics of Macromolecules; AIP series in polymers and complex materials; AIP Press: Melville, NY, USA, 1994. [Google Scholar]
- Voevodin, V.V.; Antonov, A.S.; Nikitenko, D.A.; Shvets, P.A.; Sobolev, S.I.; Sidorov, I.Y.; Stefanov, K.S.; Voevodin, V.V.; Zhumatiy, S.A. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 2019, 6, 4–11. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portnov, I.V.; Larina, A.A.; Gumerov, R.A.; Potemkin, I.I. Swelling and Collapse of Cylindrical Polyelectrolyte Microgels. Polymers 2022, 14, 5031. https://doi.org/10.3390/polym14225031
Portnov IV, Larina AA, Gumerov RA, Potemkin II. Swelling and Collapse of Cylindrical Polyelectrolyte Microgels. Polymers. 2022; 14(22):5031. https://doi.org/10.3390/polym14225031
Chicago/Turabian StylePortnov, Ivan V., Alexandra A. Larina, Rustam A. Gumerov, and Igor I. Potemkin. 2022. "Swelling and Collapse of Cylindrical Polyelectrolyte Microgels" Polymers 14, no. 22: 5031. https://doi.org/10.3390/polym14225031
APA StylePortnov, I. V., Larina, A. A., Gumerov, R. A., & Potemkin, I. I. (2022). Swelling and Collapse of Cylindrical Polyelectrolyte Microgels. Polymers, 14(22), 5031. https://doi.org/10.3390/polym14225031