Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPU/CIP Composites
2.3. Compression Molding of TPU/CIP Composites
2.4. Injection Molding of TPU/CIP Composites
2.5. Filaments of TPU/CIP Composites
2.6. FDM Printing
2.7. Testing and Characterization
3. Results and Discussion
3.1. Effect of CIP Content on Mechanical Properties of TPU/CIP Composites
3.2. Effect of CIP Content on Electromagnetic Properties of TPU/CIP Composites
3.3. Simulation of Absorption Properties of TPU/CIP Composites
3.4. Electromagnetic-Wave Absorption Properties of 3D Printed TPU/CIP Structures
3.4.1. Straight-Wall Honeycomb Structure
3.4.2. Gradient-Wall Honeycomb Structure
3.4.3. Pyramid Structure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Z.; Chen, X.; Wang, Z.; Heng, L.; Wang, S.; Tang, Z.; Zou, Y. Carbonyl iron/graphite microspheres with good impedance matching for ultrabroadband and highly efficient electromagnetic absorption. Opt. Mater. Express 2018, 8, 3319–3331. [Google Scholar] [CrossRef]
- Ma, J.; Shu, J.; Cao, W.; Zhang, M.; Wang, X.; Yuan, J.; Cao, M. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@ rGO/SiO2 composites. Compos. Part B Eng. 2019, 166, 187–195. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, Y.; Sheng, A.; Duan, H.; Zhao, G.; Liu, Y. Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Appl. Surf. Sci. 2019, 469, 1–9. [Google Scholar] [CrossRef]
- Tellakula, R.A.; Varadan, V.K.; Shami, T.C.; Mathur, G.N. Carbon fiber and nanotube based compo-sites with polypyrrole fabric as electromagnetic absorbers. Smart Mater. Struct. 2004, 13, 1040. [Google Scholar] [CrossRef]
- Liu, L.; Duan, Y.; Ma, L.; Yu, Z. Microwave absorption properties of a wave-absorbing coating employing carbonyl iron powder and carbon black. Appl. Surf. Sci. 2010, 257, 842–846. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, M.; Zhao, S.; Sun, T.; Zhang, B.; Cao, M.; Qin, Y. WireintubeZnO@ carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 2020, 382, 122860. [Google Scholar] [CrossRef]
- Wu, Z.; Pei, K.; Xing, L.; Yu, X.; You, W.; Che, R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspend-ed within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448. [Google Scholar] [CrossRef]
- Guan, X.N.; Xu, X.N.; Kuniyoshi, R.; Zhou, H.H.; Zhu, Y.F. Electromagnetic and mechanical properties of carbonyl iron powders-PLA composites fabricated by fused deposition modeling. Mater. Res. Express 2018, 5, 115303. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Didehban, K.; Yarahmadi, E.; Mirmohammadi, S.A.; Wang, G. Microwave absorption properties of polyaniline/carbonyl iron composites. Silicon 2018, 10, 1337–1343. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Li, J.; Guo, S. Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites. J. Appl. Polym. Sci. 2018, 135, 45846. [Google Scholar] [CrossRef]
- Peng, C.H.; Wang, H.W.; Lai, Y.T.; Chen, S.Y. The electromagnetic wave absorbing characteristics of MnZn ferrite-TPU composite materials. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2005; Volume 480, pp. 155–160. [Google Scholar]
- Jiang, W.; Yan, L.; Ma, H.; Fan, Y.; Wang, J.; Feng, M.; Qu, S. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci. Rep. 2018, 8, 4817. [Google Scholar] [CrossRef] [PubMed]
- Younes, H.; Li, R.; Lee, S.E.; Kim, Y.K.; Choi, D. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multiwalled car-bon nanotubes for electromagnetic wave absorption. Synth. Met. 2021, 275, 116731. [Google Scholar] [CrossRef]
- Lai, W.; Wang, Y.; He, J. Electromagnetic wave absorption properties of structural conductive ABS fabricated by fused deposition modeling. Polymers 2020, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Shu, R.; Wu, Y.; Li, Z.; Zhang, J.; Wan, Z.; Liu, Y.; Zheng, M. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogendoped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 2019, 184, 107839. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, A.; Zunke, R.H.; Kumar, A.; Singh, D. Doublelayer microwave absorber based on Cu dispersed SiC composites. Adv. Powder Technol. 2018, 29, 2019–2026. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Sun, X. Sandwich structured graphene@ Fe3O4@ carbon nanocomposites with enhanced electromagnetic absorption properties. Mater. Lett. 2015, 144, 26–29. [Google Scholar] [CrossRef]
- Kraus, J.D. Helical beam antennas for wide-band applications. Proc. IRE 1948, 36, 1236–1242. [Google Scholar] [CrossRef]
- Lai, W.; Wang, Y.; He, J. Effects of carbonyl iron powder (CIP) content on the electromagnetic wave absorption and mechanical properties of CIP/ABS composites. Polymers 2020, 12, 1694. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, Y.; Cui, Y.; Ma, G.; Tongmin, W. Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating. Prog. Org. Coat. 2018, 125, 89–98. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Pan, X.; Ni, Y.; Zhang, S.; Huang, J.; Chen, D.; Zhang, Y. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin. Phys. B Condens. Matter 2009, 404, 1343–1346. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zhou, W.; Luo, F. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials. J. Magn. Magn. Mater. 2015, 375, 111–116. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, D.; Cai, J.; Yuan, L.; Zhang, W. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet. J. Magn. Magn. Mater. 2013, 327, 82–86. [Google Scholar] [CrossRef]
- Qiao, Y.; Yao, Z.; Li, Q.; Li, Y.; Li, Z.; Zheng, T.; Zhang, X.; Wang, X. Preparation and microwave absorption of CIP/EP hollow spheres lattice composites. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106626. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, L.; Liang, Z.; Wang, X.; Li, X. A wide frequency absorbing material added CIPs using the fuse deposition modeling. J. Alloys Compd. 2017, 704, 593–598. [Google Scholar] [CrossRef]
Particle Size (µm) | Tap Density (g/cm3) | Electromagnetic Parameters (Part of Frequencies) | ||||
---|---|---|---|---|---|---|
Frequency (GHz) | ℇ′ | ℇ″ | μ′ | μ″ | ||
2–10 | 2.4–3.3 | 2 | 25.21 | 0.71 | 4.91 | 2.46 |
8 | 24.32 | 0.31 | 1.77 | 2.49 | ||
18 | 26.41 | 0.26 | 0.51 | 1.21 |
Sample | TPU (wt.%) | CIP (wt.%) | C100 (wt.%) |
---|---|---|---|
P-30 | 69 | 30 | 1 |
P-40 | 59 | 40 | 1 |
P-50 | 49 | 50 | 1 |
P-60 | 39 | 60 | 1 |
P-70 | 29 | 70 | 1 |
P-80 | 19 | 80 | 1 |
Sample | Minimum RL (dB) | Maximum EAB (GHz) (RL < −10 dB) |
---|---|---|
P-30 | −5.93 | 0 |
P-40 | −9.26 | 0 |
P-50 | −13.59 | 6.19 |
P-60 | −26.75 | 5.93 |
P-70 | −32.34 | 2.31 |
P-80 | −35.84 | 1.15 |
Materials | CIP Content | RL Test | RLmin (dB) | EAB (GHz) | Study |
---|---|---|---|---|---|
CIP/polyurethane | 80 wt.% | Experiment | −11.6 | 2.5 | [20] |
CIP/methacrylic | 70 wt.% | Simulation | −22 | 6.0 | [21] |
CIP/polyimide | 60 wt.% | Experiment | −33 | 2.5 | [22] |
Flakey CIP/methyl vinyl silicone rubber | 50 vol.% | Simulation | −26.1 | 3.0 | [23] |
CIP/epoxy resin | 40 wt.% | Experiment | −20.8 | 2.6 | [24] |
CIP/melt adhesive | 30 vol.% | Experiment | −12 | 7.2 | [25] |
CIP/TPU | 60 wt.% | Experimental using gradient-wall honeycomb structure | −36.7 | 4.6 | This study |
CIP/TPU | 60 wt.% | Experimental using pyramid structure | −49.7 | 15.8 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wang, Y. Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites. Polymers 2022, 14, 4960. https://doi.org/10.3390/polym14224960
Zheng Y, Wang Y. Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites. Polymers. 2022; 14(22):4960. https://doi.org/10.3390/polym14224960
Chicago/Turabian StyleZheng, Yinsong, and Yan Wang. 2022. "Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites" Polymers 14, no. 22: 4960. https://doi.org/10.3390/polym14224960
APA StyleZheng, Y., & Wang, Y. (2022). Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites. Polymers, 14(22), 4960. https://doi.org/10.3390/polym14224960