Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment and Materials
2.2. Experimental Methods
3. Results
3.1. Joint Morphology Characteristics
3.2. Tensile Properties and Failure Characterization
3.3. Analysis of XPS Results
4. Discussion
4.1. Energy Distribution Model
4.2. Effect of Interface Forces on Joint Morphology
5. Conclusions
- (1)
- Joint morphology was improved after introducing beam oscillation; the bubbles in O-LTJ showed a network distribution, and the bubbles in O-LCJ mainly showed discrete distributions with a reduced number.
- (2)
- The joint shearing force of O-LCJ was increased by 23.8%, and the tensile displacement was increased by seven times compared with O-LTJ. The results showed that O-LCJ could obtain higher-quality polymer–metal composite joints than O-LTJ.
- (3)
- Beam oscillation can reduce the interfacial energy gradient, which helps to mitigate the degradation and destruction of polymer macromolecular chains induced by high temperature.
- (4)
- The cooperation between bi-directional squeezing force and beam oscillation is the main reason for performance improvement, which inhibited the growth and fusion of bubbles and promoted some bubbles to escape from the interface gap, thus obtaining a discrete distribution of the bubbles by reducing their number.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation List
PET | Polyethylene terephthalate |
LTJ | Laser transmission joining |
O-LTJ | Oscillating laser transmission joining |
LCJ | Laser conduction joining |
O-LCJ | Oscillating laser conduction joining |
PC | Polycarbonate |
PE | Polyethylene |
ABS | Acrylonitrile |
PMMA | Polymethyl methacrylate |
PA6GF30 | Polyamide 6 with 30% glass fiber |
FRP | Fiber-reinforced polymer |
CFRTP | Carbon fiber-reinforced thermal plastic |
SUS444 | 444 stainless-steel |
304SS | 304 stainless-steel |
Tf | Flow temperature |
References
- Huang, Y.; Gao, X.; Zhang, Y.; Ma, B. Laser joining technology of polymer-metal hybrid structures—A review. J. Manuf. Proc. 2022, 79, 934–961. [Google Scholar] [CrossRef]
- Kah, P.; Suoranta, R.; Martikainen, J.; Magnus, C. Techniques for joining dissimilar materials: Metals and polymers. Rev. Adv. Mater. Sci. 2014, 36, 152–164. [Google Scholar]
- Sultana, T.; Georgiev, G.; Baird, R.; Auner, G.; Newaz, G.; Patwa, R.; Herfurth, H. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Jaime, S.B.M.; Rosa, M.V.; Alves, P.; Bocoli, F.J. Moisture and oxygen barrier properties of glass, PET and HDPE bottles for pharma-ceutical products. J. Drug Deliv. Sci. Technol. 2022, 71, 103330. [Google Scholar]
- Moghadasi, K.; Isa, M.S.M.; Arffin, M.A.; Mohdjamil, M.Z.; Wu, B.; Yamani, M.; Muhamad, M.R.B.; Yusof, F.; Jamaludin, M.F.; bin Ab Karim, M.S. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. J. Mater. Res. Technol. 2022, 17, 1054–1121. [Google Scholar] [CrossRef]
- Galińska, A.; Galiński, C. Mechanical Joining of Fibre Reinforced Polymer Composites to Metals—A Review. Part II: Riveting, Clinching, Non-Adhesive Form-Locked Joints, Pin and Loop Joining. Polymers 2020, 12, 1681. [Google Scholar] [CrossRef]
- Lambiase, F.; Scipioni, S.; Lee, C.-J.; Ko, D.-C.; Liu, F. A State-of-the-Art Review on Advanced Joining Processes for Metal-Composite and Metal-Polymer Hybrid Structures. Materials 2021, 14, 1890. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.; Ma, B.; Liu, G.; Zhang, N.; Zhang, Y.; You, D. Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method. Opt. Laser Technol. 2020, 136, 106726. [Google Scholar] [CrossRef]
- Tamrin, K.F.; Nukman, Y.; Zakariyah, S.S. Laser Lap Joining of Dissimilar Materials—A Review of Factors Affecting Joint Strength. Mater. Manuf. Proc. 2013, 28, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Seiji, K.; Yousuke, K. Laser direct joining of metal and plastic. Scr. Mater. 2008, 59, 1247–1250. [Google Scholar]
- Lambiase, F.; Genna, S. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology. Opt. Laser Technol. 2017, 88, 205–214. [Google Scholar] [CrossRef]
- Chan, C.W.; Graham, C.S. Fibre laser joining of highly dissimilar materials: Commercially pure Ti and PET hybrid joint for medical device applications. Mater. Des. 2016, 103, 278–292. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.W.; Zheng, K.; Shin, Y.C.; Wu, B. Analysis of weld geometry and liquid flow in laser transmission welding between poly-ethylene terephthalate (PET) and Ti6Al4V based on numerical simulation. Opt. Laser Technol. 2018, 103, 99–108. [Google Scholar] [CrossRef]
- Xu, W.; Li, P.; Liu, H.; Wang, H.; Wang, X. Numerical simulation of molten pool formation during laser transmission welding between PET and SUS304. Int. Commun. Heat Mass Transf. 2022, 131, 105860. [Google Scholar] [CrossRef]
- Xue, Z.; Shen, J.; Hu, S. Influence of scanning speed and defocus distance on laser welded PA6GF30/SUS444 dissimilar lap joints. Opt. Laser Technol. 2022, 153, 108223. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, Z.-Y.; Zhang, B.-Y.; Fu, R.; Liu, J.-Y.; Han, D.-Z. Study on interface temperature control of laser direct joining of CFRTP and aluminum alloy based on staged laser path planning. Opt. Laser Technol. 2022, 154, 108333. [Google Scholar] [CrossRef]
- Fortunato, A.; Cuccolini, G.; Ascari, A.; Orazi, L.; Campana, G.; Tani, G. Hybrid metal-plastic joining by means of laser. Int. J. Mater. Form. 2010, 3, 1131–1134. [Google Scholar] [CrossRef]
- Bergmann, J.P.; Stambke, M. Potential of laser-manufactured polymer-metal hybrid joints. Phys. Procedia 2012, 39, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Wahba, M.; Kawahito, Y.; Katayama, S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate. J. Mater. Proc. Technol. 2011, 211, 1166–1174. [Google Scholar] [CrossRef]
- Hussein, F.I.; Akman, E.; Oztoprak, B.G.; Gunes, M.; Gundogdu, O.; Kacar, E.; Hajim, K.; Demir, A. Evaluation of PMMA joining to stainless steel 304 using pulsed Nd:YAG laser. Opt. Laser Technol. 2013, 49, 143–152. [Google Scholar] [CrossRef]
- Peng, Y.; Barzinjy, A.A.; Al-Rashed, A.A.; Panjehpour, A.; Mehrjou, M.; Afrand, M. Investigation the effect of pulsed laser parameters on the temperature distribution and joint interface properties in dissimilar laser joining of austenitic stainless steel 304 and Acrylonitrile Butadiene Styrene. J. Manuf. Proc. 2019, 48, 199–209. [Google Scholar] [CrossRef]
- Lambiase, F.; Genna, S.; Kant, R. Optimization of laser-assisted joining through an integrated experimental-simulation ap-proach. Int. J. Adv. Manuf. Technol. 2018, 97, 2655–2666. [Google Scholar] [CrossRef]
- André, H.; Zaeh, M.F. Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics. Phys. Procedia 2014, 56, 1171–1181. [Google Scholar]
- Jiao, J.; Xu, Z.; Wang, Q.; Sheng, L.; Zhang, W. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization. Opt. Laser Technol. 2018, 103, 170–176. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Parametric study and formula for SCFs of FRP-strengthened CHS T/Y-joints under out-of-plane bending load. Ocean Eng. 2021, 221, 108313. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Stress concentration factors in tubular T/Y-connections reinforced with FRP under in-plane bending load. Mar. Struct. 2021, 76, 102871. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Local joint flexibility of tubular T/Y-joints retrofitted with GFRP under in-plane bending moment. Mar. Struct. 2021, 77, 102936. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load. Eng. Struct. 2021, 236, 112041. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Ashwini, K.; Sanjay, R.M.; Siengchin, S.; Khan, A.; Asiri, A.M.; Nareh, K.; Velmurugan, E.; Gupta, N.K. Impact of fiber reinforced polymer composites on structural joints of tubular sec-tions: A review. Thin-Walled Struct. 2022, 180, 109967. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef]
- Ke, W.; Bu, X.; Oliveira, J.; Xu, W.; Wang, Z.; Zeng, Z. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 2021, 133, 106540. [Google Scholar] [CrossRef]
- Jiao, J.; Ye, Y.; Jia, S.; Xu, Z.; Ouyang, W.; Zhang, W. CFRTP -Al alloy laser assisted joining with a high speed rotational welding technology. Opt. Laser Technol. 2020, 127, 106187. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, L.; Gao, M. Numerical research on molten pool dynamics of oscillating laser-arc hybrid welding. Int. J. Heat Mass Transf. 2022, 185, 122421. [Google Scholar] [CrossRef]
- Meng, Y.; Gong, M.; Zhang, S.; Zhang, Y.; Gao, M. Effects of oscillating laser offset on microstructure and properties of dissimilar Al/steel butt-joint. Opt. Lasers Eng. 2020, 128, 106037. [Google Scholar] [CrossRef]
- Hao, K.; Liao, W.; Zhang, T.; Gao, M. Interface formation and bonding mechanisms of laser transmission welded composite structure of PET on austenitic steel via beam oscillation. Compos. Struct. 2020, 235, 111752. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, J.; Shan, J.; Yang, S.; Ren, J. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Compos. Part B Eng. 2015, 70, 35–43. [Google Scholar] [CrossRef]
- Hirchenhahn, P.; Al Sayyad, A.; Bardon, J.; Felten, A.; Plapper, P.; Houssiau, L. Highlighting Chemical Bonding between Nylon-6.6 and the Native Oxide from an Aluminum Sheet Assembled by Laser Welding. ACS Appl. Polym. Mater. 2020, 2, 2517–2527. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Yao, H.; Chen, C.; Lu, X.; Ding, P.; Wang, M.; Hua, X.; Shan, A. Chemical Reaction and Bonding Mechanism at the Polymer–Metal Interface. ACS Appl. Mater. Interfaces 2022, 14, 27383–27396. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Zhang, B.; Yu, M. The Bonding Mechanism of the Micro-Interface of Polymer Coated Steel. Polymers 2020, 12, 3052. [Google Scholar] [CrossRef]
- Rouba, G.; Parinaz, S.; Rino, M.; De Geyter, N. Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surf. Interfaces 2022, 31, 102087. [Google Scholar]
- Liu, F.; Dong, P.; Lu, W.; Sun, K. On formation of Al O C bonds at aluminum/polyamide joint interface. Appl. Surf. Sci. 2019, 466, 202–209. [Google Scholar] [CrossRef]
- Tan, X.; Shan, J.; Ren, J. Effects of cr plating layer on shear strength and interface bonding characteristics of mild steel/cfrp joint by laser heating. Acta Met. Sin. 2013, 49, 751. [Google Scholar] [CrossRef]
- Chang, D.; Wang, R. Thermal contact conductance of stainless steel-GFRP interface under vacuum environment. Exp. Therm. Fluid Sci. 2012, 42, 1–5. [Google Scholar]
- Bahrami, M.; Yovanovich, M.M.; Marotta, E.E. Thermal Joint Resistance of Polymer-Metal Rough Interfaces. J. Electron. Packag. 2006, 128, 23–29. [Google Scholar] [CrossRef]
- Mahrle, A.; Beyer, E. Modeling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection. In Proceedings of the 26th International Congress on Laser Materials Processing, Orlando, FL, USA, 26–30 September 2007. [Google Scholar] [CrossRef]
- Wolfgang, G.; Sabine, S. Fracture Toughness Measurements in Engineering Polymers. In Polymer Testing, 3rd ed.; Grellmann, W., Seidler, S., Eds.; Hanser: Cincinnati, OH, USA, 2022; pp. 229–281. [Google Scholar]
- Kori, P.; Vadavadagi, B.H.; Khatirkar, R.K. Hot deformation characteristics of ASS-304 austenitic stainless steel by tensile tests. Mater. Today Proc. 2020, 28, 1895–1898. [Google Scholar] [CrossRef]
Physical Properties | Glass Transition Temperature (Tg) | Flow Temperature (Tf) | Decomposition Temperature (Td) | Light Transmittance | Relative Density |
---|---|---|---|---|---|
Value | 68–80 °C | 212–265 °C | 280–370 °C | 90% | 1.38 |
Joint | Oscillating Radius, r (mm) | Oscillating Frequency, f (Hz) | Fixed Parameters |
---|---|---|---|
LTJ | 0 | 0 | Laser power (P) = 300 W Joining speed (V) = 50 cm/min Focus position (df) = 20 mm |
O-LTJ | 2 | 300 | |
LCJ | 0 | 0 | |
O-LCJ | 2 | 300 |
Spectra | Chemical Bonds | Binding Energy (eV) | Atomic Percentage of O-LTJ Joint (%) | Atomic Percentage of O-LCJ Joint (%) |
---|---|---|---|---|
C(1s) | C–C | 284.8 | 68.1 | 69.7 |
C–O | 286.5 | 19.9 | 21.2 | |
O–C=O | 289.2 | 9.5 | 5.4 | |
C–M | 283.4 | 2.5 | 3.6 | |
Cr(2p) | Cr–O–C | 574.2 | 7.7 | 14.3 |
Cr2O3 | 575.1 | 47.3 | 72.3 | |
Cr | 576.2 | 45 | 14.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Zhao, S.; Gao, M. Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel. Polymers 2022, 14, 4956. https://doi.org/10.3390/polym14224956
Liao W, Zhao S, Gao M. Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel. Polymers. 2022; 14(22):4956. https://doi.org/10.3390/polym14224956
Chicago/Turabian StyleLiao, Wei, Suning Zhao, and Ming Gao. 2022. "Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel" Polymers 14, no. 22: 4956. https://doi.org/10.3390/polym14224956
APA StyleLiao, W., Zhao, S., & Gao, M. (2022). Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel. Polymers, 14(22), 4956. https://doi.org/10.3390/polym14224956