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Abstract: How to improve the bonding strength of polymers to metals has been one of the challenges
in joining fields. It is generally assumed that laser transmission joining is better than laser conduction
joining (LCJ) for transparent polymers, and few studies have been focused on LCJ. However, by
introducing beam oscillation, an excellent result was obtained in the LCJ of transparent polyethylene
terephthalate (PET) to 304 stainless steel. The interface defects of thermal decomposition and bubbles
could be eliminated or reduced more efficiently in oscillating laser conduction joining (O-LCJ) rather
than transmission joining. Correspondingly, the tensile shear force of joint O-LCJ could be increased
by 23.8%, and the plasticity characterized by tensile displacement could be increased by seven
times. The improvement mechanism was attributed to two factors by calculating the interface energy
distribution and analyzing the force state at the interface. One is the homogenization of interface
energy distribution caused by beam oscillation, which decreases the degradation and destruction of
polymer macromolecular chains induced by high temperature. The other is the formation of interface
bi-directional forces that both inhibit the porosity formation and intensify the chemical reactions.
The results bring new insights and provide a new pathway to improve the joining performances of
dissimilar polymers to metals.

Keywords: laser joining; polymer–metal joint; beam oscillation; bubble; interface

1. Introduction

Polymers are gradually replacing certain metal parts in automotive, aerospace, and
biomedical fields with the advantages of low density, good formability, and low price [1–3].
For example, PET polymers are commonly used to make human implants in the biomedical
field to replace certain metal parts because of their friction resistance, fatigue resistance,
good dimensional stability, and biocompatibility [4,5]. The cross-application of polymer and
metallic materials has created a demand for composite joints between them. However, the
large difference in physical and chemical properties between polymers and metals makes it
difficult to form high-quality composite joints. At present, polymer–metal dissimilar joining
methods mainly include chemical gluing, mechanical fastening, and thermal bonding [2,6,7].
Among these, chemical glue joints are less adaptable to the environment, and mechanical
fastening joints are insufficiently sealed. Relatively, laser joining as one of the thermal
joining has the advantages of high speed, no contact, and easy automation [8,9], which
makes high-quality polymer–metal composite joints possible.

In general, the laser joining of polymers to metals can be divided into two types: laser
transmission joining (LTJ) and laser conduction joining (LCJ) [1]. In LTJ, the laser directly
acts on the joining interface to melt the polymer to form a joint with the metal, which
is mainly used for plastics with high transparency, including polyethylene terephthalate
(PET), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene (PE), and
acrylonitrile (ABS) [10–14]. In LCJ, the laser energy is absorbed by the upper layer of
metal and then transferred to the interface to establish a joint, and the method is applicable
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to polymers of any transparency. In both laser transmission and conduction joining, the
concentration of laser energy brings about high temperature gradients, resulting in uneven
joint morphology. For example, in a study by Chan et al. [12] on LTJ of PET and pure
titanium, it was found that the PET in the middle of the joint showed high-temperature
decomposition discoloration, and the bond strength of the joint was severely reduced
when the percentage of discolored area was higher than 30%. Moreover, the result of
Xue et al. [15] showed that the joint area in PA6GF30 and SUS444 LCJ could be divided into
a decomposition area and a non-decomposition area, and the larger the non-decomposition
area, the better the mechanical properties of the joint.

Compared with LTJ, the laser heat source of LCJ cannot act on the interface directly [16].
This makes the interface temperature monitoring and energy regulation more difficult in
LCJ and further limits its application in transparent polymers. Some scholars have studied
the influence of lap configuration on joint quality [17–20] and found that with LCJ it is
difficult to obtain higher joint quality under Gaussian spots. Hussein et al. [20] found that
LCJ was more sensitive to heat input in the joint of PMMA and 304 stainless steel (304SS)
and only obtained a highest joint tensile force of 495 N, 54% of that of LTJ. Huang et al. [8]
found that the heat input must be controlled below 3.92 J/mm2 to avoid the thermal deteri-
oration defects in LCJ between PMMA and 304SS, but low heat input cannot guarantee
the joint tensile force. In LCJ of 304SS and ABS, Peng et al. [21] found that the interface
bubbles and process instability increased significantly when the temperature increased
from 120 to 180 ◦C. This indicated that the appropriate joining temperature range of ther-
moplastic polymers should be between the melting and decomposition temperatures [1,22],
but it is difficult to be controlled because the range is only a few tens of degrees. However,
it is noticeable that a few researchers have obtained the converse results. For example,
Wahba et al. [19] obtained a higher strength of PET/Mg joints via LCJ rather than LTJ when
using rectangular spot laser joining, which showed the possibility of using LCJ to improve
the joint strength for transparent polymer homogenizing laser power distribution.

On the other hand, the joint interface force state of LTJ and LCJ is different during join-
ing. In order to ensure the necessary reaction force of polymer–metal joints, André et al. [23]
proposed to use glass clamping in LTJ and mask clamping in LCJ. Some research showed
the effects of interface force on the properties of polymer–metal joints. Jiao et al. [24]
found that the joint strength was increased and then decreased with the increase of fixture
pressure in dissimilar CFRTP and stainless-steel joints. In addition, Hossein et al. [25–28]
studied the force state and failure behavior of fiber-reinforced polymer (FRP) tubular joints
and optimized the FRP layer number and joint geometry by simulation. Rajak et al. [29,30]
discussed the force models of FRP joints with different cross-sectional shapes, which could
improve the tubular joint design in practical applications. All the research studies above
demonstrated that the joint force state would play a big role in changing the quality of
polymer–metal joints. Let us return to Wahba’s study [19] discussed above to ask the
question, “did using a rectangular spot laser not only homogenize the power distribution
but also induce some advantages in the joint force state of LCJ”?

In recent years, laser oscillation welding has allowed more precise control of the laser
energy distribution by adjusting the oscillation frequency and amplitude [31–34], which
can obtain better process stability and welding performance without any pretreatment.
This property has been well demonstrated in the field of welding of homogeneous and
dissimilar materials. For example, Ke et al. [31] found that beam oscillation increases the
melt pool width for laser welding of aluminum alloys and stirs the keyhole in the melt
pool to promote bubble overflow. Jiao et al. [32] found that bubble defects in CFRTP and
aluminum alloy joints could be reduced by high-speed rotational welding. In addition,
the research of Shi et al. [33] demonstrated that beam oscillation created a stirring effect to
promote solute flow and uniformize the temperature distribution of the molten pool in laser
welding of aluminum alloys. Meng et al. [34] found that beam oscillation could promote the
element distribution uniformity in laser welding of aluminum/steel dissimilar materials,
thus nearly doubling the tensile strength of joints. More importantly, our previous research
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found that the use of beam oscillation in LTJ of PET and 304SS can improve the thermal
deterioration defects of the joint by optimizing the scanning radius, which is 26% higher
than the shear tension of the non-scanned joint [35].

For LCJ of transparent polymers, the laser action position and the force state at the
interface are changed in comparison of LTJ. Which obtains better effects in LCJ when beam
oscillation is employed? Less research has been addressed on this topic so far. This study
therefore carried out experiments of the oscillating laser joining of transparent PET and
304SS and discussed the strength improvement mechanisms on the basis of laser beam
energy distribution and the interface force.

2. Materials and Methods
2.1. Experimental Equipment and Materials

The experimental setup was composed of a fiber laser (wavelength: 1064 nm), a robot,
and a galvanometer welding head, as shown in Figure 1. The galvanometer was used to
scan the laser in a circle, and the actual beam trajectory after superimposing the linear
motion of the robot is shown in Figure 1a. The defocus during joining was fixed at 20 mm,
and the energy distribution at the spot is shown in Figure 1b. Two lap configurations of
LTJ and LCJ were designed, as shown in Figure 1c. The experimental base materials were
304SS (chemical composition: Fe-18.09Cr-8.01Ni-1.25Mn wt%) and transparent PET with a
size of 100 mm × 25 mm × 1 mm. The physical properties of PET are shown in Table 1. The
joining parameters are shown in Table 2, where scanning parameters (r = 2 mm, f = 300 Hz)
are the optimal parameters obtained after LTJ optimization [35].
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Figure 1. (a) Schematic diagram of experimental equipment, (b) energy distribution of spot at 20 mm
of focus position, (c) clamping configurations corresponding to the two joining methods, (d) schematic
diagram of composite joint tensile-shear test.

Table 1. Physical properties of PET.

Physical
Properties

Glass
Transition

Temperature
(Tg)

Flow
Temperature

(Tf)

Decomposition
Temperature

(Td)

Light
Transmittance

Relative
Density

Value 68–80 ◦C 212–265 ◦C 280–370 ◦C 90% 1.38
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Table 2. Joining process variables.

Joint Oscillating Radius,
r (mm)

Oscillating Frequency,
f (Hz) Fixed Parameters

LTJ 0 0 Laser power (P) = 300 W
Joining speed (V) = 50 cm/min

Focus position (df) = 20 mm

O-LTJ 2 300
LCJ 0 0

O-LCJ 2 300

2.2. Experimental Methods

Acetone was used to remove oil stains on the surface of 304SS before joining. A
Zeiss stereo microscope was used to observe the macroscopic morphology of joints. The
tensile shear test (as shown in Figure 1d) was carried out according to ISO 4136:2001,
and the average value of the same parameters was obtained by repeating the test three
times. Tensile displacement was discussed for the first time in this study to characterize
the joint toughness, which is defined as the displacement between PET and 304SS from the
beginning of stretching to the time of joint fracture. Scanning electron microscopy (SEM)
and X-ray photoelectron spectroscopy (XPS) were used to analyze the joint morphology and
element morphology of the fractured samples. Before XPS detection, the sample surface
was sputtered with an Ar-ion beam (500 eV) for 100 s to remove surface contaminants from
any unknown source.

3. Results
3.1. Joint Morphology Characteristics

The macroscopic morphologies of joints are shown in Figure 2. The results of Figure 2a,c
show that there were obvious thermal deterioration defects in joints without oscillation.
Among them, the width (WJ) of joint LTJ was 5.6 mm, and the width of the thermal
deterioration defect (WTD) was 2.3 mm, as shown in Figure 2a. In addition, a series
of bubble channels appeared inside the joint. The width of joint LCJ and the thermal
deterioration defect were 7.6 mm and 1.7 mm, respectively, as shown in Figure 2c. Under
the same thermal input, the joint width of LCJ was 35.7% higher than that of LTJ. After
using beam oscillation, the thermal deterioration defects in LTJ and LCJ were eliminated
successfully, and the joint morphology uniformity was improved, as shown in Figure 2b,d.
Under the same joining parameters, the bubbles in the oscillating laser transmission joining
(O-LTJ) were interconnected in a network distribution, as shown in Figure 2e, while the
bubbles in the oscillating laser conduction joining (O-LCJ) were discretely distributed with
a reduced number, as shown in Figure 2f.

The cross-section morphologies of the joint are shown in Figure 3. It can be seen from
Figure 3a that a large number of bubbles fused with each other and presented a chain
distribution in the O-LTJ joint, which conformed to the network distribution characteristics
of Figure 2e. Compared with O-LTJ, the bubbles in O-LCJ were independent of each other
and presented a discrete distribution, as shown in Figure 3b, and the result is consistent
with Figure 2f. The magnified view of the O-LTJ joint shows no significant change in 304SS,
while the PET of the interface formed large bubbles due to decomposition, as shown in
Figure 3c. However, the morphology in Figure 3d shows a rough surface with many micro-
bubbles and micro-cracks occurring in the PET of the LCJ joint, and there are also obvious
cracks in the interface. The interface cracks were mainly caused by the solidification and
shrinkage of PET after melting and decomposing at high temperatures [36]. As can be seen
in Figure 3e, the molten PET at the interface filled the crater on the surface of 304SS to form
a mechanical anchorage in the non-bubble area of the O-LCJ joint.
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3.2. Tensile Properties and Failure Characterization

The tensile fracture morphologies and mechanical properties of joints are shown in
Figures 4 and 5, respectively. As shown in Figure 4a, joint LTJ showed a mixed fracture
mode at the interface with an average shear tensile force of 841.2 N and a displacement of
1.1 mm. However, the shear tensile force and displacement of joint O-LTJ were increased by
26% and 27%, respectively. The joint LCJ fractured at the PET rather than at the interface,
as shown in Figure 4c, and had a higher shear tensile force of 1113.3 N and a displacement
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of 1.9 mm. After using beam oscillation, the shear tensile force and displacement of
joint O-LCJ were further increased to 1282.5 N and 11.5 mm respectively, 96.7% and 90%
of PET, respectively. In addition, as shown in Figure 4d, an obvious necking occurred,
corresponding to the yield process in the tensile curve in Figure 5a, which was similar to
PET. Compared to O-LTJ, joint O-LCJ had a higher tensile force increased by 23.8%, and a
larger displacement increased by 7 times. This suggests that the discrete distribution of
interface bubbles of joint O-LCJ is beneficial to the performance, which is better than the
network distribution of joint O-LTJ. Moreover, the O-LCJ joint had better plasticity due to
the obviously increased displacement.
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The microfracture morphologies of the 304SS side were observed by SEM in order to
analyze the fracture surface characteristics. As shown in Figure 6a, the residual PET in
the LTJ joint showed two morphologies; one was the middle area with a thicker residual
layer of more serious damage, and the other was the area of bubbles on both sides with a
thinner residual layer. Both morphologies showed an obvious brittle fracture, as shown in
Figure 6d. Although the surface also showed a brittle fracture in the O-LTJ joint, the residual
PET was uniform and smooth, as shown in Figure 6b,e. Unlike the smooth surface of O-LTJ,
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the fracture surface of the O-LCJ joint was rough, with obvious plastic deformation, as
shown in Figure 6c,f, mainly showing ductile fracture characteristics.
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As shown in Figure 7a, the base metal 304SS mainly contained the elements of Fe, Cr,
and Ni. In joint LTJ, the C-rich region was found in the bubble areas, and only a small
amount of C was detected in the non-bubble areas. The characterizations of Fe and Cr
were complementary to those of C, the high concentration of which mainly appeared in
the non-bubble areas, as shown in Figure 7b. In O-LCJ, the C-rich region both occurred in
the bubble areas and non-bubble areas, as shown in Figure 7c, indicating a higher bonding
strength of non-bubble areas in O-LCJ. No matter LTJ or O-LCJ, the residues of C, Fe, and Cr
appeared in the non-bubble areas at the same time, indicating that some chemical reactions
occurred at the interface.
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3.3. Analysis of XPS Results

Numerous studies have shown that mechanical anchoring, chemical bonding, elec-
tronic interaction, diffusion, and adsorption are the five main bonding mechanisms at the
interface of polymer–metal joints [37–41], among which XPS is an important means to study
the chemical bonding mechanism of the joint interface. For example, Chan et al. [12] found
that Ti–C chemical bonds played an important contribution to the high strength of the joint
in laser joining of PET to pure titanium by XPS detection. In addition, Liu et al. [41] found
that carbonyl components (C=O) in polymers provided high activity, and it was easy to
form C–O–M bonds with metal at the interface.

Based on the above theory, the elemental spectrum of the interfaces of O-LCJ and
O-LTJ were analyzed by XPS, respectively. As Figure 8a,c shows, the split-peak fitting
showed that in addition to three peaks in the C(1s) spectrum at 284.8 eV (C–C), 286.5 eV
(C–O), and 289.2 eV (O–C=O) (the split-peak positions are based on Ref. [40]), there was
also a peak at the binding energy 283.4 eV position. The binding energy at position 283.4 eV
in the C(1s) spectrum was presumed to correspond to the C–M chemical bond based on the
results of Refs. [38,42]. The results of the Cr(2p) spectrum split-peak fitting were 574.2 eV
(Cr), 575.1 eV (C–O–Cr), and 576.2 eV (Cr2O3), as shown in Figure 8b,d. The split-peak
positions were mainly based on Ref. [38]. Among them, the C–M and C–O–Cr bonds
were newly formed due to the chemical reaction between PET and 304SS. As shown in
Table 3, the relative content (the ratio of single peak area to the total area) of O=C–O bonds
decreased from 9.5% to 5.4% in O-LCJ, while the relative content of C–M increased from
2.5% to 3.6%. In addition, the relative content of Cr decreased from 45% to 14.3%, while the
content of newly formed C–O–Cr bonds increased from 7.7% to 14.3%. This suggests that
more C–M and C–O–Cr bonds appeared in the O-LCJ joint, which was one of the reasons
for the improvement of its tensile properties.
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Table 3. Percentage of atoms with different chemical bonds after split-peak fitting of C(1s) spectra
and Cr(2p) spectra.

Spectra Chemical
Bonds

Binding Energy
(eV)

Atomic Percentage
of O-LTJ Joint (%)

Atomic Percentage
of O-LCJ Joint (%)

C(1s)

C–C 284.8 68.1 69.7
C–O 286.5 19.9 21.2

O–C=O 289.2 9.5 5.4
C–M 283.4 2.5 3.6

Cr(2p)
Cr–O–C 574.2 7.7 14.3
Cr2O3 575.1 47.3 72.3

Cr 576.2 45 14.3

4. Discussion
4.1. Energy Distribution Model

Heat conduction is the main form of heat transfer in laser joining between polymer
and metal, which realizes heat transfer through the thermal motion of optical particles
in contact with discrete points. The coefficient of heat conductivity (hc) is calculated by
Equation (1) [43,44]:

hc = 1.25Ks

√
R2

a1 + R2
a2

(
p

Hc

)
(1)

where Ks is the heat conductivity of phonons, and Ra1 and Ra2 are the roughness of polymer
and metal at the interface, respectively. P is the stress of the interface, and Hc is the hardness
of the polymer.

The parameters Ks, Ra1, Ra2, and Hc are only related to the properties of the material
itself, and the parameter p is related to the joining state. In LTJ, the interface is only subjected
to the unidirectional force provided by 304SS. However, in LCJ, the interface is subjected
to bi-directional forces provided by both the 304SS and the fixture. Therefore, LCJ has a
larger p and a higher hc compared with LTJ. In addition, because the laser transmittance of
the PET is only 90% [13], there is a 10% energy loss in the transmission joining interface.
What is more, the interface temperature during the laser joining of polymer to metal does
not exceed 500 ◦C [11], resulting in a small thermal conductivity (around 16 W/(m·K)) of
304SS, which may be more favorable to LCJ. For these reasons, the LCJ has higher energy
transfer efficiency than the LTJ, although the distance between the laser and the joining
interface is larger. Therefore, the width of joint LCJ is 35.7% higher than that of LTJ under
the same joining parameters.

The energy distribution of the beam oscillation in the joint is calculated based on
the energy deposition model proposed by Mahrle et al. [45]. Firstly, the laser spot energy
distribution is calculated by substituting laser beam quality and process parameters into
the standard Gaussian distribution model. Secondly, the computed energy distribution is
substituted into the circular oscillation equation. Finally, the interface energy distribution
results of laser oscillation are shown in a three-dimensional picture using MATLAB by
periodic integration operations.

As shown in Figure 9a, the energy distribution at the joint interface is very concentrated
and presented in the form of a single wave peak when it is without oscillation. The energy
density in the center of the joint reaches 120.9 J/mm2 with a large attenuation gradient to
both sides. After oscillating with a circular beam of 2 mm amplitude and 300 Hz frequency,
the energy distribution in the joint is more uniform and shows a double wave peak form
with two high sides and a low middle. The energy density of the wave peaks and middle
trough are 18.6 J/mm2 and 16.5 J/mm2, respectively. The energy attenuation gradient to
both sides is small, as shown in Figure 9b. Since the LCJ is not oscillating, the energy in the
center of the joint is very concentrated according to the energy distribution model, which
leads to serious thermal deterioration defects of the PET in the center of the joint, as shown
in Figure 9c. Moreover, the thermal deterioration in the central area of the joint in LCJ
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proved that the temperature exceeded the decomposition temperature of PET. The high
temperature led to a sudden change in the crystallinity of the polymers [14], which reduced
the plasticity of the PET. Therefore, brittle fractures of PET occurred during the tensile
process of the LCJ joint. After using beam oscillation, the uniformity of energy distribution
is improved significantly in O-LTJ, and the heat is transferred over equal distances. The PET
at the interface is heated more uniformly and the bubbles are of the same size, as shown in
Figure 9d. In O-LCJ, the energy distribution uniformity is the same as in O-LTJ, but the
energy transfer direction is opposite, and the transfer distance is increased, as shown in
Figure 9e. The joint interface temperature decreases as the heat transfer distance increases,
but the heat range also increases at the same time, which helps to further reduce the energy
gradient at the interface, thus improving the morphology of O-LCJ.
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4.2. Effect of Interface Forces on Joint Morphology

In order to further explore the joint morphology mechanism, the force models of
the interface of O-LTJ and O-LCJ are established, respectively, as shown in Figure 10. In
O-LTJ, the laser penetrating PET heats 304SS to raise the interface temperature, and the
PET at the interface is decomposed by heat and begins to form bubbles, which continue to
expand as the temperature rises, as shown in Figure 10a. When the temperature reaches
Tf, the interaction forces between the molecular chains of the PET in the viscous flow state
have been disrupted [46]. The macromolecular chain breaks and relative displacement
occurs, which is evidenced by the expansion and deformation of the polymers, as shown in
Figure 10b. Therefore, the bubbles are only subjected to the single upward reaction force
provided by 304SS, which causes them to expand toward the PET interior, as shown in the
yellow area of Figure 10b. The bubbles gradually form a network distribution after growth,
expansion, and fusion.



Polymers 2022, 14, 4956 11 of 14

Polymers 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

layer in O-LCJ provide bi-directional forces for the reactive interface, limiting the pathway 
for the growth and fusion of bubbles into the PET interior. On the other hand, the circular 
motion of the beam oscillation will form a stirring effect in the PET molten pool [24], which 
interacts with the bi-directional force to cause some of the bubbles to be squeezed out from 
the interface gap (as shown by the red arrows in Figure 10d). Finally, the discrete distri-
bution is obtained by reducing the number of bubbles. In addition, the bi-directional 
squeezing force can provide a greater reaction pressure for the chemical reaction between 
the PET and 304SS interface, which promotes the formation of C–M and C–O–Cr chemical 
bonds, as shown in Figure 10e. 

 
Figure 10. Formation of bubbles and chemical reaction of the interface: (a) joining process diagram 
of O-LTJ, (b) bubble force analysis of O-LTJ, (c) joining process diagram of O-LCJ, (d) bubble force 
analysis of O-LCJ, (e) chemical reaction mechanism of the interface. 

5. Conclusions  
The major conclusions are summarized as follows: 
(1) Joint morphology was improved after introducing beam oscillation; the bubbles 

in O-LTJ showed a network distribution, and the bubbles in O-LCJ mainly showed dis-
crete distributions with a reduced number. 

(2) The joint shearing force of O-LCJ was increased by 23.8%, and the tensile displace-
ment was increased by seven times compared with O-LTJ. The results showed that O-LCJ 
could obtain higher-quality polymer–metal composite joints than O-LTJ. 

(3) Beam oscillation can reduce the interfacial energy gradient, which helps to miti-
gate the degradation and destruction of polymer macromolecular chains induced by high 
temperature. 

(4) The cooperation between bi-directional squeezing force and beam oscillation is 
the main reason for performance improvement, which inhibited the growth and fusion of 
bubbles and promoted some bubbles to escape from the interface gap, thus obtaining a 
discrete distribution of the bubbles by reducing their number. 

The results may help to solve problems in polymer–metal composite joints and 
broaden their application scope and may also provide new guidelines for the design and 
manufacture of polymer–metal composite joints. 

Author Contributions: Conceptualization, W.L. and S.Z.; methodology, W.L. and M.G.; software, 
W.L. and S.Z.; investigation, W.L. and S.Z.; data curation, W.L.; writing—original draft preparation, 
W.L.; writing—review and editing, M.G. and S.Z.; visualization, W.L. and S.Z.; supervision, M.G.; 
funding acquisition, M.G. All authors have read and agreed to the published version of the manu-
script. 

Funding: This research was financially supported by the National Natural Science Foundation of 
China (52275335 and 52205360), and the Aviation Science Foundation of China (20200054079001). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 10. Formation of bubbles and chemical reaction of the interface: (a) joining process diagram
of O-LTJ, (b) bubble force analysis of O-LTJ, (c) joining process diagram of O-LCJ, (d) bubble force
analysis of O-LCJ, (e) chemical reaction mechanism of the interface.

In O-LCJ, the laser heats 304SS directly and transfers the heat to the joint interface,
where the PET is decomposed to form bubbles, as shown in Figure 10c. Since 304SS has a
much higher elastic modulus (E: about 200 GPa) than PET (E: about 4 GP) and its thermal
deformation temperature is in the range of 900–1150 ◦C [47], the interface temperature is
much lower than its deformation temperature, so sufficient stiffness is always maintained
during the joining. Therefore, the 304SS in the upper layer and the clamps in the lower
layer in O-LCJ provide bi-directional forces for the reactive interface, limiting the pathway
for the growth and fusion of bubbles into the PET interior. On the other hand, the circular
motion of the beam oscillation will form a stirring effect in the PET molten pool [24], which
interacts with the bi-directional force to cause some of the bubbles to be squeezed out
from the interface gap (as shown by the red arrows in Figure 10d). Finally, the discrete
distribution is obtained by reducing the number of bubbles. In addition, the bi-directional
squeezing force can provide a greater reaction pressure for the chemical reaction between
the PET and 304SS interface, which promotes the formation of C–M and C–O–Cr chemical
bonds, as shown in Figure 10e.

5. Conclusions

The major conclusions are summarized as follows:

(1) Joint morphology was improved after introducing beam oscillation; the bubbles in
O-LTJ showed a network distribution, and the bubbles in O-LCJ mainly showed
discrete distributions with a reduced number.

(2) The joint shearing force of O-LCJ was increased by 23.8%, and the tensile displacement
was increased by seven times compared with O-LTJ. The results showed that O-LCJ
could obtain higher-quality polymer–metal composite joints than O-LTJ.

(3) Beam oscillation can reduce the interfacial energy gradient, which helps to mitigate
the degradation and destruction of polymer macromolecular chains induced by high
temperature.

(4) The cooperation between bi-directional squeezing force and beam oscillation is the
main reason for performance improvement, which inhibited the growth and fusion of
bubbles and promoted some bubbles to escape from the interface gap, thus obtaining
a discrete distribution of the bubbles by reducing their number.

The results may help to solve problems in polymer–metal composite joints and broaden
their application scope and may also provide new guidelines for the design and manufac-
ture of polymer–metal composite joints.
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Notation List
PET Polyethylene terephthalate
LTJ Laser transmission joining
O-LTJ Oscillating laser transmission joining
LCJ Laser conduction joining
O-LCJ Oscillating laser conduction joining
PC Polycarbonate
PE Polyethylene
ABS Acrylonitrile
PMMA Polymethyl methacrylate
PA6GF30 Polyamide 6 with 30% glass fiber
FRP Fiber-reinforced polymer
CFRTP Carbon fiber-reinforced thermal plastic
SUS444 444 stainless-steel
304SS 304 stainless-steel
Tf Flow temperature
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