Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, S.; Pan, Y.; Lin, H.; Li, L.; Fu, X.; Long, J. Crystalline Covalent Organic Frameworks with Tailored Linkages for Photocatalytic H2 Evolution. ChemSusChem 2021, 14, 4958–4972. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Geng, K.; Jiang, D. Engineering Covalent Organic Frameworks for Light-Driven Hydrogen Production from Water. ACS Mater. Lett. 2019, 1, 203–208. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Adv. Mater. 2018, 30, 1801955. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, X.; Chen, L.; Xiong, Y.; Xu, H. Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. Angew. Chem. Int. Ed. 2018, 57, 3454–3458. [Google Scholar] [CrossRef] [PubMed]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, Q.; Xu, T.; Xie, Z.; Liu, J.; Yu, X.; Ma, S.; Qin, T.; Chen, L. De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. J. Am. Chem. Soc. 2019, 141, 13822–13828. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Lv, Y.; Zhao, Z.; Ma, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Polymorphism of 2D Imine Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2021, 60, 5363–5369. [Google Scholar] [CrossRef]
- Liang, R.-R.; Jiang, S.-Y.; Han, A.R.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920–3951. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Ding, X.; Yu, B.; Wu, H.; Zhou, W.; Liu, W.; Wei, C.; Chen, B.; Qi, D.; Wang, H.; et al. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. J. Am. Chem. Soc. 2021, 143, 7104–7113. [Google Scholar] [CrossRef]
- Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R.P.; Ye, M.-Y.; Brückner, A.; Schmidta, J.; Thomas, A. Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci. 2019, 10, 8316–8322. [Google Scholar] [CrossRef]
- Vardhan, H.; Nafady, A.; Al-Enizi, A.; Ma, S. Pore surface engineering of covalent organic frameworks: Structural diversity and applications. Nanoscale 2019, 11, 21679–21708. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; NTan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, J.; Yan, X.; Wu, C.; Zhu, X.; Li, B.; Li, T.; Guo, Q.; Gao, J.; Hu, M.; et al. Donor–Acceptor Covalent Organic Framework Hollow Submicrospheres with a Hierarchical Pore Structure for Visible-Light-Driven H2 Evolution. J. Mater. Chem. A 2022, 10, 11010–11018. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, Y.; Wang, C.; Zhang, S.; Song, J.; Li, Y.; Ma, S.; Cheng, P.; Zhang, Z.; Chen, Y. Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H2 Evolution. ACS Catal. 2021, 11, 2098–2107. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Zhang, S.; Zhang, Y.; Zhang, J.; Li, R.; Peng, T. Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H2 Generation under Visible Light. ACS Appl. Energy Mater. 2019, 2, 5665–5676. [Google Scholar] [CrossRef]
- Qian, Y.; Li, D.; Han, Y.; Jiang, H. Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771. [Google Scholar] [CrossRef]
- Jin, E.; Lan, Z.; Jiang, Q.; Geng, G.; Li, G.; Wang, X.; Jiang, D. 2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. Chem 2019, 5, 1632–1647. [Google Scholar] [CrossRef]
- Cheung, P.L.; Lee, S.K.; Kubiak, C.P. Facile Solvent-Free Synthesis of Thin Iron Porphyrin COFs on Carbon Cloth Electrodes for CO2 Reduction. Chem. Mater. 2019, 31, 1908–1919. [Google Scholar] [CrossRef]
- Lin, S.; Diercks, C.S.; Zhang, Y.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.; Yaghi, O.M.; et al. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science 2015, 349, 1208–1213. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Qi, D.; Li, Y.; Wang, T.; Liu, H.; Jiang, J. Tetrapyrrole Macrocycle Based Conjugated Two-Dimensional Mesoporous Polymers and Covalent Organic Frameworks: From Synthesis to Material Applications. Coordin. Chem. Rev. 2019, 378, 188–206. [Google Scholar] [CrossRef]
- Biswal, B.P.; Valligatla, S.; Wang, M.; Banerjee, T.; Saad, N.A.; Mariserla, B.M.K.; Chandrasekhar, N.; Becker, D.; Addicoat, M.; Senkovska, I.; et al. Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2019, 58, 6896–6900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X.; Gao, L.; Qiao, L.; Li, X.; Wu, L.; Wang, C. Rational Design of Isostructural 2D Porphyrin-Based Covalent Organic Frameworks for Tunable Photocatalytic Hydrogen Evolution. Nat Commun. 2021, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J.; Yuan, D.; Lan, Y. Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O. Angew. Chem. Int. Ed. 2019, 58, 12392–12397. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; He, H.; Sun, L.; Wang, H.; Fang, X.; Zhao, Y.; Zheng, D.; Qi, Y.; Li, Z.; et al. In Situ Photodeposition of Platinum Clusters on A Covalent OrganicFramework forPhotocatalytic Hydrogen Production. Nat. Commun. 2022, 13, 1355. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wang, J.; Li, Y.; Sun, J.; Bai, F. Morphology-Controlled Porphyrin Nanocrystals with Enhanced Photocatalytic Hydrogen Production. Nano Res. 2022, 15, 5719–5725. [Google Scholar]
- Liu, Y.; Wang, L.; Feng, H.; Ren, X.; Ji, J.; Bai, F.; Fan, H. Microemulsion-Assisted Self-Assembly and Synthesis of Size-Controlled Porphyrin Nanocrystals with Enhanced Photocatalytic Hydrogen Evolution. Nano Lett. 2019, 19, 2614–2619. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, W.; Liu, H. Facile Construction of Fully sp2-Carbon Conjugated Two-Dimensional Covalent Organic Frameworks Containing Benzobisthiazole Units. Nat. Commun. 2022, 13, 100. [Google Scholar] [CrossRef]
- Mao, C.; Hu, Y.; Yang, C.; Qin, C.; Dong, G.; Zhou, Y.; Zhang, Y. Well-Designed Spherical Covalent Organic Frameworks with an Electron-Deficient and Conjugate System for Efficient Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2021, 4, 14111–14120. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Mo, D.; He, F.; Wen, Z.; Wu, X.; Xu, H.; Chen, L. Modulating Benzothiadiazole-Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 16902–16909. [Google Scholar]
- Zhang, W.; Chen, L.; Dai, S. Reconstructed Covalent Organic Frameworks. Nature 2022, 604, 72–79. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, E.; Gao, Y.; Yang, W.; Huang, C.; Liu, F. A Conjugated Copper Porphyrin Polymer for Catalytic Coupling of Acetonitrile and Alcohols. Chem. Sel. 2019, 4, 10653. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Huang, X.; Dong, L.; Lu, M.; Guo, C.; Yuan, D.; Chen, Y.; Xu, G.; Li, S.; et al. Porphyrin-Based COF 2D Materials: Variable Modification of Sensing Performances by Post-Metallization. Angew. Chem. Int. Ed. 2022, 61, e202115308. [Google Scholar]
Name | Activity (μmol/g/h) | Conditions | Ref. |
---|---|---|---|
Ni-Py-COF | 13,231 | Pt (8 wt%), 5 mg AA in 10 mL water, 800 nm > λ > 380 nm | [20] |
Ni-Bn-COF | 1805 | ||
PETZ-COF | 7204.3 | Pt (3 wt%), 0.1 M AA, λ > 420 nm | [13] |
PEBP-COF | 217.1 | ||
BTH-1 | 10,500 | Pt (8 wt%), 0.1 M AA, λ > 420 nm | [27] |
BTH-2 | 1200 | ||
BTH-3 | 15,100 | ||
COFs-1 | 1033 | Pt (1 wt%), TEOA (10 vol %), λ > 420 nm | [28] |
COFs-2 | 1444 | ||
COFs-3 | 2789 | ||
COFs-4 | 1274 | ||
Py-CITP-BT-COF | 8875 | Pt (5 wt%), 0.1 M AA, λ > 420 nm | [29] |
Py-FTP-BT-COF | 2875 | ||
Py-HTP-BT-COF | 1078 | ||
RC-COF-1 | 27,980 | Pt (3 wt%), 0.1 M AA, λ > 420 nm | [30] |
Zn-Por-TT COF | 8200 | Pt (5 wt%), 0.1 M AA, λ > 400 nm | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Ren, X.; Cao, R.; Chang, Z.; Chang, X.; Bai, F.; Li, Y. Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution. Polymers 2022, 14, 4893. https://doi.org/10.3390/polym14224893
Lv M, Ren X, Cao R, Chang Z, Chang X, Bai F, Li Y. Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution. Polymers. 2022; 14(22):4893. https://doi.org/10.3390/polym14224893
Chicago/Turabian StyleLv, Mingbo, Xitong Ren, Ronghui Cao, Zhiming Chang, Xiao Chang, Feng Bai, and Yusen Li. 2022. "Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution" Polymers 14, no. 22: 4893. https://doi.org/10.3390/polym14224893
APA StyleLv, M., Ren, X., Cao, R., Chang, Z., Chang, X., Bai, F., & Li, Y. (2022). Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution. Polymers, 14(22), 4893. https://doi.org/10.3390/polym14224893