l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Resin Formulation
2.3. Curing Cycle and Sample Preparation
2.4. Characterization Methods
2.4.1. Dynamic Mechanical Analysis
2.4.2. Tensile and Compression Tests
2.4.3. Three-Point Bending
2.4.4. Fracture Toughness
2.4.5. Scanning Electron Microscopy
3. Results and Discussion
3.1. Dynamic Mechanical Analysis
3.2. Tensile Tests
3.3. Compression Tests
3.4. Three-Point Bending
3.5. Fracture Toughness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
T = −40 C | T = −22 C | T = −80 C | |
---|---|---|---|
Tensile modulus in | 3.4 ± 0.1 | 3.2 ± 0.1 | 2.2 ± 0.1 |
Tensile strength in | 63.5 ± 5.1 | 56.0 ± 3.5 | 35.7 ± 0.7 |
Tensile strain in | 2.59 ± 0.31 | 2.65 ± 0.41 | 3.77 ± 0.73 |
Compression yield strength in | 149.1 ± 5.6 | 98.4 ± 1.2 | 54.6 ± 1.65 |
Compression yield strain in | 6.1 ± 0.43 | 8.51 ± 0.38 | 7.46 ± 0.37 |
Flexural modulus in | 3.3 ± 0.2 | 2.9 ± 0.1 | 2.2 ± 0.1 |
Flexural strength in | 100.5 ± 5.9 | 84.7 ± 6.9 | 60.6 ± 2.1 |
Flexural strain in | 3.18 ± 0.22 | 3.17 ± 0.36 | 5.81 ± 0.14 |
in | 1.05 ± 0.09 | 1.09 ± 0.14 | 1.14 ± 0.07 |
in J m−2 | 419 ± 47 | 510 ± 132 | 805 ± 113 |
in | 5.1 | 13.1 | 46.1 |
References
- Schürmann, H. Konstruieren mit Faser-Kunststoff-Verbunden; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Henning, F.; Moeller, E. Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung; Carl Hanser Verlag GmbH & Company KG: Munich, Germany, 2020. [Google Scholar]
- Lengsfeld, H.; Wolff-Fabris, F.; Krämer, J.; Lacalle, J.; Altstädt, V. Faserverbundwerkstoffe-Prepregs und ihre Verarbeitung; Hanser Publishers: Munich, Germany, 2014. [Google Scholar] [CrossRef] [Green Version]
- Bourne, L.; Milner, F.; Alberman, K. Health problems of epoxy resins and amine–curing agents. Am. J. Ind. Med. 1959, 16, 81–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greim, H.; Bury, D.; Klimisch, H.J.; Oeben-Negele, M.; Ziegler-Skylakakis, K. Toxicity of aliphatic amines: Structure-activity relationship. Chemosphere 1998, 36, 271–295. [Google Scholar] [CrossRef]
- Venables, K. Low molecular weight chemicals, hypersensitivity, and direct toxicity: The acid anhydrides. Br. J. Ind. Med. 1989, 46, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Anku, W.; Mamo, M.; Govender, P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 2005, 69, 1–8. [Google Scholar] [CrossRef]
- Nelson, D.; Cox, M. Lehninger Principles of Biochemistry; MacMillan Learning: New York, NY, USA, 2021. [Google Scholar]
- Larsen, P. 6-Physical and Chemical Properties of Amino Acids; Academic Press: London, UK, 1980. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, F.; Wong, C. Novel, Environmentally Friendly Crosslinking System of an Epoxy Using an Amino Acid: Tryptophan-Cured Diglycidyl Ether of Bisphenol A Epoxy. J. Polym. Sci. Part Polym. Chem. 2007, 45, 181–190. [Google Scholar] [CrossRef]
- Motahari, A.; Omrani, A.; Rostami, A. Theoretical study on the mechanism of epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole as a catalyst. Comput. Theor. Chem. 2011, 977, 168–180. [Google Scholar] [CrossRef]
- Motahari, A.; Rostami, A.; Omrani, A.; Ehsani, M. On the Thermal Degradation of a Novel Epoxy-Based Nanocomposite Cured With Tryptophan as an Environment-Friendly Curing Agent. J. Macromol. Sci. Part B Phys. 2015, 54, 517–532. [Google Scholar] [CrossRef]
- Mazzocchetti, L.; Merighi, S.; Benelli, T.; Giorgini, L. Evaluation of Tryptophan – Late curing agent systems as hardener for epoxy resin. AIP Conf. Proc. 2018, 1981, 020170. [Google Scholar] [CrossRef]
- Gnanasekar, P.; Yan, N. Synthesis and thermo-mechanical properties of novel spirobiindane based epoxy nanocomposites with tryptophan as a green hardener: Curing kinetics using model free approach. Polym. Degrad. Stab. 2019, 163, 110–121. [Google Scholar] [CrossRef]
- Merighi, S.; Mazzocchetti, L.; Benelli, T.; Giorgini, L. Evaluation of Novel Bio-Based Amino Curing Agent Systems for Epoxy Resins: Effect of Tryptophan and Guanine. Processes 2021, 9, 42. [Google Scholar] [CrossRef]
- Rothenhäusler, F.; Ruckdaeschel, H. l-Arginine as a Bio-based Curing Agent for Epoxy Resins: Glass Transition Temperature, Rheology and Latency. Polymers 2022, 14, 4331. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Fujigasaki, J.; Enjoji, M.; Shibita, A.; Teramoto, N.; Ifuku, S. Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur. Polym. J. 2018, 98, 216–225. [Google Scholar] [CrossRef]
- Levita, G.; De Petris, S.; Marchetti, A.; Lazzeri, A. Crosslink density and fracture toughness of epoxy resins. J. Mater. Sci. 1991, 26, 2348–2352. [Google Scholar] [CrossRef]
- Cease, H.; Derwent, P.; Diehl, H.; Fast, J.; Finley, D. Measurement of Mechanical Properties of Three Epoxy Adhesives at Cryogenic Temperatures for CCD Construction; Fermi National Accelerator Laboratory: Batavia, IL, USA, 2006. [Google Scholar]
- Irwin, G. Plastic zone near a crack and fracture toughness. In Proceedings of the 7th Sagamore Conference, Raquette Lake, NY, USA, 16–19 August 1960; p. IV-63. [Google Scholar]
- Garcia, F.G.; Soares, B.G.; Pita, V.J.R.R.; Sánchez, R.; Rieumont, J. Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J. Appl. Polym. Sci. 2007, 106, 2047–2055. [Google Scholar] [CrossRef]
- Williams, J.G. The beta relaxation in epoxy resin-based networks. J. Appl. Polym. Sci. 1979, 23, 3433–3444. [Google Scholar] [CrossRef]
- Ochi, M.; Kageyama, H.; Shimbo, M. Mechanical and dielectric relaxations of poly(hydroxy ethers): 1. Low-temperature relaxations. Polymer 1988, 29, 320–324. [Google Scholar] [CrossRef]
- Hayaty, M.; Honarkar, H.; Beheshty, M.H. Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iran. Polym. J. 2013, 22, 591–598. [Google Scholar] [CrossRef]
- Kishi, H.; Naitou, T.; Matsuda, S.; Murakami, A.; Muraji, Y.; Nakagawa, Y. Mechanical properties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1425–1434. [Google Scholar] [CrossRef]
- Schneider, J.P.; Lengsfeld, H. Toughening of a dicyandiamide-cured epoxy resin: Influence of cure conditions on different rubber modifications. Polym. Eng. Sci. 2021, 61, 2445–2452. [Google Scholar] [CrossRef]
- Hübner, F.; Brückner, A.; Dickhut, T.; Altstädt, V.; Rios de Anda, A.; Ruckdäschel, H. Low temperature fatigue crack propagation in toughened epoxy resins aimed for filament winding of type V composite pressure vessels. Polym. Test. 2021, 102, 107323. [Google Scholar] [CrossRef]
- Jamshidi, H.; Akbari, R.; Beheshty, M.H. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine. Iran. Polym. J. 2015, 24, 399–410. [Google Scholar] [CrossRef]
- Hübner, F.; Hoffmann, M.; Sommer, N.; Altstädt, V.; Scherer, A.; Dickhut, T.; Ruckdäschel, H. Temperature-dependent fracture behavior of towpreg epoxy resins for cryogenic liquid hydrogen composite vessels: The influence of polysiloxane tougheners on the resin yield behavior. Polym. Test. 2022, 113, 107678. [Google Scholar] [CrossRef]
- Greenberg, A.; Breneman, C.M.; Liebman, J.F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hughes, A.B. Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Matsumoto, K.; Yanagi, R.; Oe, Y. Recent Advances in the Synthesis of Carboxylic Acid Esters. In Carboxylic Acid; Badea, G.I., Radu, G.L., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 2. [Google Scholar] [CrossRef] [Green Version]
- Varley, R.J. Toughening of epoxy resin systems using low-viscosity additives. Polym. Int. 2004, 53, 78–84. [Google Scholar] [CrossRef]
- Kim, B.C.; Park, S.W.; Lee, D.G. Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 2008, 86, 69–77. [Google Scholar] [CrossRef]
- Kunz, S.; Sayre, J.; Assink, R. Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers. Polymer 1982, 23, 1897–1906. [Google Scholar] [CrossRef]
- Giannakopoulos, G.; Masania, K.; Taylor, A.C. Toughening of epoxy using core–shell particles. J. Mater. Sci. 2011, 46, 327–338. [Google Scholar] [CrossRef]
Component | Argopox |
---|---|
D.E.R. 331 | |
l-arginine | |
DYHARD®UR500 | 1 |
Physical Quantity | Value |
---|---|
(max. ) in | 119.1 ± 0.45 |
Cross-link density in mol | 2540 |
at in | 5.9 ± 0.1 |
at 22 in | 2.7 ± 0.1 |
at 80 in | 2.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothenhäusler, F.; Ruckdaeschel, H. l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties. Polymers 2022, 14, 4696. https://doi.org/10.3390/polym14214696
Rothenhäusler F, Ruckdaeschel H. l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties. Polymers. 2022; 14(21):4696. https://doi.org/10.3390/polym14214696
Chicago/Turabian StyleRothenhäusler, Florian, and Holger Ruckdaeschel. 2022. "l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties" Polymers 14, no. 21: 4696. https://doi.org/10.3390/polym14214696
APA StyleRothenhäusler, F., & Ruckdaeschel, H. (2022). l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties. Polymers, 14(21), 4696. https://doi.org/10.3390/polym14214696