Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barrier Membrane Production
2.2. Chemical Characterization
2.3. Mechanical Behavior
2.4. Surface Properties
2.5. Biological Properties
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided Bone Regeneration: Materials and Biological Mechanisms Revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buser, D.; Brägger, U.; Lang, N.P.; Nyman, S. Regeneration and Enlargement of Jaw Bone Using Guided Tissue Regeneration. Clin. Oral Implant. Res. 1990, 1, 22–32. [Google Scholar] [CrossRef]
- Hämmerle, C.H.F.; Jung, R.E.; Feloutzis, A. A Systematic Review of the Survival of Implants in Bone Sites Augmented with Barrier Membranes (Guided Bone Regeneration) in Partially Edentulous Patients. J. Clin. Periodontol. 2002, 29 (Suppl. S3), 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kinaia, B.M.; Kazerani, S.; Korkis, S.; Masabni, O.M.; Shah, M.; Neely, A.L. Effect of Guided Bone Regeneration on Immediately Placed Implants: Meta-Analyses with at Least 12 Months Follow-up after Functional Loading. J. Periodontol. 2021, 92, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Lin, G.-H.; Monje, A.; Chan, H.-L.; Wang, H.-L. Wound Healing Complications Following Guided Bone Regeneration for Ridge Augmentation: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 41–50. [Google Scholar] [CrossRef]
- Cucchi, A.; Chierico, A.; Fontana, F.; Mazzocco, F.; Cinquegrana, C.; Belleggia, F.; Rossetti, P.; Soardi, C.M.; Todisco, M.; Luongo, R.; et al. Statements and Recommendations for Guided Bone Regeneration: Consensus Report of the Guided Bone Regeneration Symposium Held in Bologna, October 15 to 16, 2016. Implant Dent. 2019, 28, 388–399. [Google Scholar] [CrossRef]
- Jeznach, O.; Kolbuk, D.; Sajkiewicz, P. Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers 2019, 11, 1669. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Wu, M.-H.; Bocchini, S.; Rasyida, A.; Yang, M.-C. PBAT Based Nanocomposites for Medical and Industrial Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1331–1351. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, L.M.; de Souza Balbinot, G.; Brotto, G.L.; Leitune, V.C.B.; Soares, R.M.D.; Collares, F.M.; Ponzoni, D. 3D Printing of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Niobium Containing Bioactive Glasses (BAGNb) Scaffolds: Characterization of Composites, in Vitro Bioactivity, and In Vivo Bone Repair. J. Tissue Eng. Regen. Med. 2022, 16, 267–278. [Google Scholar] [CrossRef] [PubMed]
- de Souza Balbinot, G.; da Cunha Bahlis, E.A.; Visioli, F.; Leitune, V.C.B.; Soares, R.M.D.; Collares, F.M. Polybutylene-Adipate-Terephthalate and Niobium-Containing Bioactive Glasses Composites: Development of Barrier Membranes with Adjusted Properties for Guided Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 125, 112115. [Google Scholar] [CrossRef]
- de Oliveira, N.A.; Leitune, V.C.B.; de Souza Balbinot, G.; Guerreiro, G.M.B.; Wang, L.; Collares, F.M.; Sanches Borges, A.F. 1,3,5-Triacryloylhexahydro-1,3,5-Triazine Improves Antibacterial and Physicochemical Properties of an Experimental Resin-Based Cement. Int. J. Adhes. Adhes. 2022, 117, 103157. [Google Scholar] [CrossRef]
- Altmann, A.S.P.; Collares, F.M.; Ogliari, F.A.; Samuel, S.M.W. Effect of Methacrylated-Based Antibacterial Monomer on Orthodontic Adhesive System Properties. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2015, 147, S82–S87. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.C.; Stürmer, M.; Garcia, I.M.; Melo, M.A.; Sauro, S.; Leitune, V.C.B.; Collares, F.M. Dental Sealant Empowered by 1,3,5-Tri Acryloyl Hexahydro-1,3,5-Triazine and α-Tricalcium Phosphate for Anti-Caries Application. Polymers 2020, 12, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunasekaran, P.; Rajasekaran, G.; Han, E.H.; Chung, Y.-H.; Choi, Y.-J.; Yang, Y.J.; Lee, J.E.; Kim, H.N.; Lee, K.; Kim, J.-S.; et al. Cationic Amphipathic Triazines with Potent Anti-Bacterial, Anti-Inflammatory and Anti-Atopic Dermatitis Properties. Sci. Rep. 2019, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Structure-Guided Discovery of 1,3,5-Triazine-Pyrazole Conjugates as Antibacterial and Antibiofilm Agent against Pathogens Causing Human Diseases with Favorable Metabolic Fate. Bioorg. Med. Chem. Lett. 2014, 24, 3321–3325. [Google Scholar] [CrossRef] [PubMed]
- Scorciapino, M.A.; Rinaldi, A.C. Antimicrobial Peptidomimetics: Reinterpreting Nature to Deliver Innovative Therapeutics. Front. Immunol. 2012, 3, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Min, J.; Liu, Z.; Young, A.; Deshazer, H.; Gao, T.; Chang, Y.-T.; Kallenbach, N.R. Synthesis and Biological Evaluation of Novel 1,3,5-Triazine Derivatives as Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2008, 18, 1308–1311. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting In Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Standard Test Method for Tensile Properties of Plastics. Available online: https://www.astm.org/d0638-22.html (accessed on 20 August 2022).
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Ruiz, C.; Toledano, M.; Osorio, R. Testing Active Membranes for Bone Regeneration: A Review. J. Dent. 2021, 105, 103580. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Wang, L.; Liu, D.; Qin, C.; Shi, Y. A Review of Preparation Methods of Porous Skin Tissue Engineering Scaffolds. Mater. Today Commun. 2022, 32, 104109. [Google Scholar] [CrossRef]
- Bhat, H.R.; Pandey, P.K.; Ghosh, S.K.; Singh, U.P. Development of 4-Aminoquinoline-1,3,5-Triazine Conjugates as Potent Antibacterial Agent through Facile Synthetic Route. Med. Chem. Res. 2013, 22, 5056–5065. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M.F. An Overview on Properties and Applications of Poly(Butylene Adipate-Co-Terephthalate)-PBAT Based Composites. Polym. Eng. Sci. 2019, 59, E7–E15. [Google Scholar] [CrossRef] [Green Version]
- da Silva, C.G.; Kano, F.S.; dos Santos Rosa, D. Thermal Stability of the PBAT Biofilms with Cellulose Nanostructures/Essential Oils for Active Packaging. J. Therm. Anal. Calorim. 2019, 138, 2375–2386. [Google Scholar] [CrossRef]
- Fukushima, K.; Rasyida, A.; Yang, M.-C. Characterization, Degradation and Biocompatibility of PBAT Based Nanocomposites. Appl. Clay Sci. 2013, 80–81, 291–298. [Google Scholar] [CrossRef]
- Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend under Soil Conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Aversa, C.; Barletta, M.; Cappiello, G.; Gisario, A. Compatibilization Strategies and Analysis of Morphological Features of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Poly(Lactic Acid) PLA Blends: A State-of-Art Review. Eur. Polym. J. 2022, 173, 111304. [Google Scholar] [CrossRef]
- Caballe-Serrano, J.; Munar-Frau, A.; Ortiz-Puigpelat, O.; Soto-Penaloza, D.; Penarrocha, M.; Hernandez-Alfaro, F. On the Search of the Ideal Barrier Membrane for Guided Bone Regeneration. J. Clin. Exp. Dent. 2018, 10, e477–e483. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Jiang, H.B.; Kim, J.-E.; Zhang, S.; Kim, K.-M.; Kwon, J.-S. Bioresorbable Magnesium-Reinforced PLA Membrane for Guided Bone/Tissue Regeneration. J. Mech. Behav. Biomed. Mater. 2020, 112, 104061. [Google Scholar] [CrossRef] [PubMed]
- Camani, P.H.; Souza, A.G.; Barbosa, R.F.S.; Zanini, N.C.; Mulinari, D.R.; Rosa, D.S. Comprehensive Insight into Surfactant Modified-PBAT Physico-Chemical and Biodegradability Properties. Chemosphere 2021, 269, 128708. [Google Scholar] [CrossRef] [PubMed]
- von Arx, T.; Broggini, N.; Jensen, S.S.; Bornstein, M.M.; Schenk, R.K.; Buser, D. Membrane Durability and Tissue Response of Different Bioresorbable Barrier Membranes: A Histologic Study in the Rabbit Calvarium. Int. J. Oral Maxillofac. Implant. 2005, 20, 843–853. [Google Scholar]
- Santana-Melo, G.F.; Rodrigues, B.V.M.; da Silva, E.; Ricci, R.; Marciano, F.R.; Webster, T.J.; Vasconcellos, L.M.R.; Lobo, A.O. Electrospun Ultrathin PBAT/NHAp Fibers Influenced the in Vitro and in Vivo Osteogenesis and Improved the Mechanical Properties of Neoformed Bone. Colloids Surf. B Biointerfaces 2017, 155, 544–552. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.; Wang, Y.; Jiang, H.; Wang, X. Advances and Challenges in Metallic Nanomaterial Synthesis and Antibacterial Applications. J. Mater. Chem. B 2020, 8, 4764–4777. [Google Scholar] [CrossRef]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/57/75769.html (accessed on 2 June 2022).
- Franca, C.M.; de Souza Balbinot, G.; Cunha, D.; de Paulo Aragão Saboia, V.; Ferracane, J.; Bertassoni, L.E. In-Vitro Models of Biocompatibility Testing for Restorative Dental Materials: From 2D Cultures to Organs on-a-Chip. Acta Biomater. 2022, 150, 58–66. [Google Scholar] [CrossRef] [PubMed]
- ISO 7405:2018; Dentistry—Evaluation of Biocompatibility of Medical Devices Used in Dentistry. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/15/71503.html (accessed on 2 June 2022).
- Schiroky, P.R.; Leitune, V.C.B.; Garcia, I.M.; Ogliari, F.A.; Samuel, S.M.W.; Collares, F.M. Triazine Compound as Copolymerized Antibacterial Agent in Adhesive Resins. Braz. Dent. J. 2017, 28, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the Healthy “Core Microbiome” of Oral Microbial Communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Abe, G.L.; Tsuboi, R.; Kitagawa, H.; Sasaki, J.-I.; Li, A.; Kohno, T.; Imazato, S. Poly(Lactic Acid/Caprolactone) Bilayer Membrane Blocks Bacterial Penetration. J. Periodontal Res. 2022, 57, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus Aureus. Virulence 2021, 12, 8688. [Google Scholar] [CrossRef]
- McCormack, M.G.; Smith, A.J.; Akram, A.N.; Jackson, M.; Robertson, D.; Edwards, G. Staphylococcus Aureus and the Oral Cavity: An Overlooked Source of Carriage and Infection? Am. J. Infect. Control 2015, 43, 35–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza Balbinot, G.; Mendes Nobre do Espírito Santo, C.; Leitune, V.C.B.; Visioli, F.; Duarte Soares, R.M.; Sauro, S.; Collares, F.M. Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration. Polymers 2022, 14, 4482. https://doi.org/10.3390/polym14214482
de Souza Balbinot G, Mendes Nobre do Espírito Santo C, Leitune VCB, Visioli F, Duarte Soares RM, Sauro S, Collares FM. Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration. Polymers. 2022; 14(21):4482. https://doi.org/10.3390/polym14214482
Chicago/Turabian Stylede Souza Balbinot, Gabriela, Cassiano Mendes Nobre do Espírito Santo, Vicente Castelo Branco Leitune, Fernanda Visioli, Rosane Michele Duarte Soares, Salvatore Sauro, and Fabricio Mezzomo Collares. 2022. "Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration" Polymers 14, no. 21: 4482. https://doi.org/10.3390/polym14214482
APA Stylede Souza Balbinot, G., Mendes Nobre do Espírito Santo, C., Leitune, V. C. B., Visioli, F., Duarte Soares, R. M., Sauro, S., & Collares, F. M. (2022). Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration. Polymers, 14(21), 4482. https://doi.org/10.3390/polym14214482