Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Composite Materials
2.2. Mechanical Testing
- (I)
- Dark storage in distilled water at 37 °C for 1 day;
- (II)
- Dark storage in distilled water at 37 °C for 30 days;
- (III)
- Dark storage in distilled water at 37 °C for 30 days, followed by thermocycling (10,000 cycles between 5 and 55 °C, dwell time: 30 s).
2.3. Degree of Conversion
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Mechanical properties were significantly less impaired by the customized bioactive glass;
- The reduction of mechanical properties with aging was diminished for the customized bioactive glass;
- Flexural strength values recommended by the ISO 4049 standard (80 MPa) were attained for all filler loadings (5–40 wt%) of the customized bioactive glass, whereas for the conventional bioactive glass 45S5 the same criterion was fulfilled only for filler loading of up to 20 wt%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental Resin Composites: A Review on Materials to Product Realizations. Compos. Part B Eng. 2022, 230, 109495. [Google Scholar] [CrossRef]
- Scepanovic, D.; Par, M.; Attin, T.; Tauböck, T.T. Marginal Adaptation of Flowable vs Sonically Activated or Preheated Resin Composites in Cervical Lesions. J. Adhes. Dent. 2022, 24, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, I.; De Munck, J.; Vanloy, A.; Declerck, D.; Lambrechts, P.; Peumans, M.; Teughels, W.; Van Meerbeek, B.; Van Landuyt, K.L. Secondary Caries: Prevalence, Characteristics, and Approach. Clin. Oral Investig. 2020, 24, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Song, F.V.; Yang, B.; Di Tommaso, D.; Donnan, R.S.; Chass, G.A.; Yada, R.Y.; Farrar, D.H.; Tian, K.V. Resolving Nanoscopic Structuring and Interfacial THz Dynamics in Setting Cements. Mater. Adv. 2022, 3, 4982–4990. [Google Scholar] [CrossRef]
- Pires, P.M.; de Almeida Neves, A.; Makeeva, I.M.; Schwendicke, F.; Faus-Matoses, V.; Yoshihara, K.; Banerjee, A.; Sauro, S. Contemporary Restorative Ion-Releasing Materials: Current Status, Interfacial Properties and Operative Approaches. Br. Dent. J. 2020, 229, 450–458. [Google Scholar] [CrossRef]
- Itota, T.; Carrick, T.E.; Yoshiyama, M.; McCabe, J.F. Fluoride Release and Recharge in Giomer, Compomer and Resin Composite. Dent. Mater. 2004, 20, 789–795. [Google Scholar] [CrossRef]
- Al-eesa, N.A.; Fernandes, S.D.; Hill, R.G.; Wong, F.S.L.; Jargalsaikhan, U.; Shahid, S. Remineralising Fluorine Containing Bioactive Glass Composites. Dent. Mater. 2021, 37, 672–681. [Google Scholar] [CrossRef]
- Kelić, K.; Par, M.; Peroš, K.; SŠutej, I.; Tarle, Z. Fluoride-Releasing Restorative Materials: The Effect of a Resinous Coat on Ion Release. Acta Stomatol. Croat. 2020, 54, 371–381. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Zhu, X.X. Functional Fillers for Dental Resin Composites. Acta Biomater. 2021, 122, 50–65. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.; Lassila, L. Development and Characterization of Ion-Releasing Fiber-Reinforced Flowable Composite. Dent. Mater. 2022, 38, 1598–1609. [Google Scholar] [CrossRef]
- Braga, R.R. Calcium Phosphates as Ion-Releasing Fillers in Restorative Resin-Based Materials. Dent. Mater. 2019, 35, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Chiari, M.D.S.; Rodrigues, M.C.; Xavier, T.A.; de Souza, E.M.N.; Arana-Chavez, V.E.; Braga, R.R. Mechanical Properties and Ion Release from Bioactive Restorative Composites Containing Glass Fillers and Calcium Phosphate Nano-Structured Particles. Dent. Mater. 2015, 31, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Mechanical Properties of Experimental Composites Containing Bioactive Glass after Artificial Aging in Water and Ethanol. Clin. Oral Investig. 2019, 23, 2733–2741. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.M.Y.M. Mechanical Properties of Linear Low-Density Polyethylene Fire-Retarded with Melamine Polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46770. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Influence of Flame Retardant Magnesium Hydroxide on the Mechanical Properties of High Density Polyethylene Composites. J. Reinf. Plast. Compos. 2017, 36, 1802–1816. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and Tensile Behaviors of Fiber-Reinforced Thermosetting Composites Embedded with Nanoparticles. J. Compos. Mater. 2019, 53, 709–718. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.Y.M.; Zaghloul, M.M.Y. Experimental and Modeling Analysis of Mechanical-Electrical Behaviors of Polypropylene Composites Filled with Graphite and MWCNT Fillers. Polym. Test. 2017, 63, 467–474. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electrophoretic Deposition of PANI Nano Fibers as a Manufacturing Technology for Corrosion Protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Mahmoud Zaghloul, M.Y.; Yousry Zaghloul, M.M.; Yousry Zaghloul, M.M. Developments in Polyester Composite Materials—An in-Depth Review on Natural Fibres and Nano Fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials Guidance—Resin Composites: Part I—Mechanical Properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Marovic, D.; Par, M.; Macan, M.; Klarić, N.; Plazonić, I.; Tarle, Z. Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials 2022, 15, 902. [Google Scholar] [CrossRef] [PubMed]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Moreau, J.L.; Weir, M.D.; Giuseppetti, A.A.; Chow, L.C.; Antonucci, J.M.; Xu, H.H.K. Long-Term Mechanical Durability of Dental Nanocomposites Containing Amorphous Calcium Phosphate Nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1264–1273. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Al-eesa, N.A.; Wong, F.S.L.; Johal, A.; Hill, R.G. Fluoride Containing Bioactive Glass Composite for Orthodontic Adhesives—Ion Release Properties. Dent. Mater. 2017, 33, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Attin, T.; Tarle, Z.; Tauböck, T.T. A New Customized Bioactive Glass Filler to Functionalize Resin Composites: Acid-Neutralizing Capability, Degree of Conversion, and Apatite Precipitation. J. Clin. Med. 2020, 9, 1173. [Google Scholar] [CrossRef]
- Al-eesa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride Containing Bioactive Glass Composite for Orthodontic Adhesives — Apatite Formation Properties. Dent. Mater. 2018, 34, 1127–1133. [Google Scholar] [CrossRef]
- Jones, J.R. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Tauböck, T.T. Ion Release and Hydroxyapatite Precipitation of Resin Composites Functionalized with Two Types of Bioactive Glass. J. Dent. 2022, 118, 103950. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Prskalo, K.; Tauböck, T.T. Effect of Adhesive Coating on Calcium, Phosphate, and Fluoride Release from Experimental and Commercial Remineralizing Dental Restorative Materials. Sci. Rep. 2022, 12, 10272. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tauböck, T.T. Anti-Demineralizing Protective Effects on Enamel Identified in Experimental and Commercial Restorative Materials with Functional Fillers. Sci. Rep. 2021, 11, 11806. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Tauböck, T.T. Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin. Biomedicines 2021, 9, 1616. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. ISO 4049 versus NIST 4877: Influence of Stress Configuration on the Outcome of a Three-Point Bending Test in Resin-Based Dental Materials and Interrelation between Standards. J. Dent. 2021, 110, 103682. [Google Scholar] [CrossRef] [PubMed]
- Nespoli, A.; Passaretti, F.; Szentmiklósi, L.; Maróti, B.; Placidi, E.; Cassetta, M.; Yada, R.Y.; Farrar, D.H.; Tian, K.V. Biomedical NiTi and β-Ti Alloys: From Composition, Microstructure and Thermo-Mechanics to Application. Metals 2022, 12, 406. [Google Scholar] [CrossRef]
- Par, M.; Prskalo, K.; Tauböck, T.T.; Skenderovic, H.; Attin, T.; Tarle, Z. Polymerization Kinetics of Experimental Resin Composites Functionalized with Conventional (45S5) and a Customized Low-Sodium Fluoride-Containing Bioactive Glass. Sci. Rep. 2021, 11, 21225. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Hashinger, D.T.; Fairhurst, C.W. Calibration of FTIR Conversion Analysis of Contemporary Dental Resin Composites. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef]
- Quinn, J.B.; Quinn, G.D. A Practical and Systematic Review of Weibull Statistics for Reporting Strengths of Dental Materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef][Green Version]
- Ferracane, J.L. Hygroscopic and Hydrolytic Effects in Dental Polymer Networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Marovic, D.; Tarle, Z.; Hiller, K.A.; Müller, R.; Ristic, M.; Rosentritt, M.; Skrtic, D.; Schmalz, G. Effect of Silanized Nanosilica Addition on Remineralizing and Mechanical Properties of Experimental Composite Materials with Amorphous Calcium Phosphate. Clin. Oral Investig. 2014, 18, 783–792. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Bjelovucic, R.; Marovic, D.; Schmalz, G.; Gamulin, O.; Tarle, Z. Long-Term Water Sorption and Solubility of Experimental Bioactive Composites Based on Amorphous Calcium Phosphate and Bioactive Glass. Dent. Mater. J. 2019, 38, 555–564. [Google Scholar] [CrossRef][Green Version]
- Oja, J.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites. Materials 2021, 14, 2769. [Google Scholar] [CrossRef]
- Khvostenko, D.; Mitchell, J.C.; Hilton, T.J.; Ferracane, J.L.; Kruzic, J.J. Mechanical Performance of Novel Bioactive Glass Containing Dental Restorative Composites. Dent. Mater. 2013, 29, 1139–1148. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ilie, N. Comparative Effect of Self- or Dual-Curing on Polymerization Kinetics and Mechanical Properties in a Novel, Dental-Resin-Based Composite with Alkaline Filler. Materials 2018, 11, 108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marovic, D.; Haugen, H.J.; Negovetic Mandic, V.; Par, M.; Zheng, K.; Tarle, Z.; Boccaccini, A.R. Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization. Materials 2021, 14, 2611. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Lapas-Barisic, M.; Gamulin, O.; Panduric, V.; Spanovic, N.; Tarle, Z. Long Term Degree of Conversion of Two Bulk-Fill Composites. Acta Stomatol. Croat. 2016, 50, 292–300. [Google Scholar] [CrossRef]
- Yap, A.U.J.; Chandra, S.P.; Chung, S.M.; Lim, C.T. Changes in Flexural Properties of Composite Restoratives after Aging in Water. Oper. Dent. 2002, 27, 468–474. [Google Scholar]
- Sideridou, I.D.; Karabela, M.M.; Bikiaris, D.N. Aging Studies of Light Cured Dimethacrylate-Based Dental Resins and a Resin Composite in Water or Ethanol/Water. Dent. Mater. 2007, 23, 1142–1149. [Google Scholar] [CrossRef]
- Bastioli, C.; Romano, G.; Migliaresi, C. Water Sorption and Mechanical Properties of Dental Composites. Biomaterials 1990, 11, 219–223. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Tauböck, T.T.; Attin, T.; Tarle, Z. Degree of Conversion of Experimental Resin Composites Containing Bioactive Glass 45S5: The Effect of Post-Cure Heating. Sci. Rep. 2019, 9, 17245. [Google Scholar] [CrossRef][Green Version]
- Par, M.; Spanovic, N.; Bjelovucic, R.; Skenderovic, H.; Gamulin, O.; Tarle, Z. Curing Potential of Experimental Resin Composites with Systematically Varying Amount of Bioactive Glass: Degree of Conversion, Light Transmittance and Depth of Cure. J. Dent. 2018, 75, 113–120. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Mohn, D.; Attin, T.; Tauböck, T.T.; Tarle, Z. Curing Potential of Experimental Resin Composites Filled with Bioactive Glass: A Comparison between Bis-EMA and UDMA Based Resin Systems. Dent. Mater. 2020, 36, 711–723. [Google Scholar] [CrossRef]
- Par, M.; Mohn, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Polymerization Shrinkage Behaviour of Resin Composites Functionalized with Unsilanized Bioactive Glass Fillers. Sci. Rep. 2020, 10, 15237. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Placing Dental Composites—A Stressful Experience. Oper. Dent. 2008, 33, 247–257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Drummond, J.L.; Miescke, K.J. Weibull Models for the Statistical Analysis of Dental Composite Data: Aged in Physiologic Media and Cyclic-Fatigued. Dent. Mater. 1991, 7, 25–29. [Google Scholar] [CrossRef]
Bioactive Glass 45S5 | Low-Sodium Fluoride-Containing Bioactive Glass | Inert Barium Glass | Silica | |
---|---|---|---|---|
Particle size (d50) | 3 µm | 3 µm | 1 µm | 5–50 nm |
Composition (wt%) | 45.0% SiO2 24.5% CaO 24.5% Na2O 6.0% P2O5 | 33.5% SiO2 33.0% CaO 10.5% Na2O 11.0% P2O5 12.0% CaF2 | 55.0% SiO2 25.0% BaO 10.0% Al2O3 10.0% B2O3 | >99.8% SiO2 |
Silanization (wt%) | none | none | 3.2 | 4–6 |
Manufacturer | Schott, Mainz, Germany | Schott, Mainz, Germany | Schott, Mainz, Germany | Evonik, Hanau, Germany |
Product name/LOT | G018-144/M111473 | experimental batch | GM27884/Sil13696 | Aerosil R 7200/157020635 |
Bisphenol A-Glycidyl Methacrylate (Bis-GMA) | Triethylene Glycol Dimethacrylate (TEGDMA) | |
---|---|---|
CAS Number | 1565-94-2 | 109-16-0 |
Molecular formula | C29H36O8 | C14H22O6 |
Molar mass (g/mol) | 512.60 | 286.32 |
Refractive index (at 25 °C) | 1.540 | 1.4595 |
Viscosity (Pa·s) | 910 | 0.01 |
Material Designation | Filler Composition (wt%) | Total Filler Ratio (wt%) | |||
---|---|---|---|---|---|
Bioactive Glass 45S5 | Experimental Low-Sodium Fluoride-Containing Bioactive Glass | Reinforcing Fillers (Inert Barium Glass/Silica = 2:1) | |||
Control | 0 | 0 | 70 | 70 | |
C-series | C-5 | 5 | 0 | 65 | 70 |
C-10 | 10 | 0 | 60 | 70 | |
C-20 | 20 | 0 | 50 | 70 | |
C-40 | 40 | 0 | 30 | 70 | |
F-series | F-5 | 0 | 5 | 65 | 70 |
F-10 | 0 | 10 | 60 | 70 | |
F-20 | 0 | 20 | 50 | 70 | |
F-40 | 0 | 40 | 30 | 70 |
Flexural Strength | Flexural Modulus | |||
---|---|---|---|---|
Material | p-Value | Partial Eta Squared | p-Value | Partial Eta Squared |
Charisma | 0.0019 | 0.1978 | 0.0000 | 0.6750 |
Control | 0.0034 | 0.1811 | 0.0000 | 0.8458 |
C-5 | 0.0078 | 0.1565 | 0.0000 | 0.4852 |
C-10 | 0.0060 | 0.1642 | 0.0021 | 0.1945 |
C-20 | 0.0000 | 0.8260 | 0.0001 | 0.2704 |
C-40 | 0.0000 | 0.7417 | 0.0000 | 0.8610 |
F-5 | 0.1429 | 0.0660 | 0.0000 | 0.6356 |
F-10 | 0.9828 | 0.0006 | 0.0000 | 0.6410 |
F-20 | 0.9618 | 0.0014 | 0.0000 | 0.3914 |
F-40 | 0.0000 | 0.3094 | 0.0000 | 0.4556 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Par, M.; Plančak, L.; Ratkovski, L.; Tauböck, T.T.; Marovic, D.; Attin, T.; Tarle, Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers 2022, 14, 4289. https://doi.org/10.3390/polym14204289
Par M, Plančak L, Ratkovski L, Tauböck TT, Marovic D, Attin T, Tarle Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers. 2022; 14(20):4289. https://doi.org/10.3390/polym14204289
Chicago/Turabian StylePar, Matej, Laura Plančak, Lucija Ratkovski, Tobias T. Tauböck, Danijela Marovic, Thomas Attin, and Zrinka Tarle. 2022. "Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass" Polymers 14, no. 20: 4289. https://doi.org/10.3390/polym14204289