Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric
Abstract
:1. Introduction
2. Methodology
2.1. Chemicals
2.2. Functionalization of Polyester with Nanocalcite
2.2.1. Pretreatment of Polyester
2.2.2. Seeding of Polyester with Nanocalcite
2.2.3. Growth of Nanocalcite on Polyester
2.2.4. Prewetting of Samples
2.3. Characterization of Samples of Nanocalcite @ PF
2.4. Assessment of Comparative Hydrophilicity of Nanocalcite @ PF
2.5. Determination of Photocatalytic Activity of Nanocalcite @ PF
3. Results and Discussion
3.1. Characterization of Nanocalcite @ PF
3.1.1. XRD Analysis of Nanocalcite @ PF
3.1.2. FTIR Analysis of Nanocalcite @ PF
3.1.3. Scanning Electron Microscopic Analysis (SEM) of Nanocalcite @ PF
3.1.4. Optical Properties of As-Fabricated and Basic Prewetted Nanocalcite @ PF
3.2. Evaluation of Hydrophilicity in Nanocalcite @ PF on Prewetting
3.2.1. Contact Angle Measurement of Nanocalcite @ PF
3.2.2. Wickability Analysis of Nanocalcite @ PF
3.2.3. Determination of Surface Charge of Nanocalcite @ PF by Zeta Potential
3.3. Photocatalytic Degradation of Imidacloprid (Insecticide) Using Nanocalcite @ PF
3.3.1. Photocatalytic Activity of Basic Prewetted Nanocalcite @ PF
3.3.2. Statistical Analysis for As-Fabricated and Basic Prewetted Nanocalcite @ PF
3.4. Evaluation of Extent of Photocatalytic Degradation of Imidacloprid Solution
3.4.1. Evaluation Degradation of Imidacloprid by UV–Visible Spectroscopy
3.4.2. High Performance Liquid Chromatographic Analysis of Imidacloprid
3.4.3. FTIR Spectrum Analysis of As-Fabricated and Prewetted Imidacloprid Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Yang, F.; Li, C.; Wang, F.; Zhu, H.; Guo, Y. Effect of the molecular weight of polymer and diluent on the performance of hydrophilic poly (vinyl butyral) porous heddle via thermally induced phase separation. Mater. Chem. Phys. 2021, 261, 124227. [Google Scholar] [CrossRef]
- Lee, H.S.; Song, W.S. Surface modification of polyester fabrics by enzyme treatment. Fibers Polym. 2010, 11, 54–59. [Google Scholar] [CrossRef]
- Pongsathit, S.; Chen, S.Y.; Rwei, S.P.; Pattamaprom, C. Eco-friendly high-performance coating for polyester fabric. J. Appl. Polym. Sci. 2019, 136, 48002. [Google Scholar] [CrossRef]
- Ruan, S.; Li, X.; Jiang, T. Hydrophilic-hydrophobic poly (dimethyl siloxane)-based SERS substrate with internal Raman signaling. Mater. Chem. Phys. 2020, 255, 123582. [Google Scholar] [CrossRef]
- Upasani, S.P.; Sreekumar, T.; Jain, A.K. Polyester fabric with inherent antibacterial, hydrophilic and UV protection properties. J. Text. Inst. 2016, 107, 1135–1143. [Google Scholar] [CrossRef]
- Kamel, M.M.; El Zawahry, M.M.; Helmy, H.; Eid, M.A. Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment. J. Text. Inst. 2011, 102, 220–231. [Google Scholar] [CrossRef]
- Ashar, A.; Bhatti, I.A.; Jilani, A.; Mohsin, M.; Rasul, S.; Iqbal, J.; Shakoor, M.B.; Al-Sehemi, A.G.; Wageh, S.; Al-Ghamdi, A.A. Enhanced solar photocatalytic reduction of Cr (VI) using a (ZnO/CuO) nanocomposite grafted onto a polyester membrane for wastewater treatment. Polymers 2021, 13, 4047. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Zhang, C.H.; Wang, Z.Q.; Fu, X.; Wei, R. Scaly bionic structures constructed on a polyester fabric with anti-fouling and anti-bacterial properties for highly efficient oil–water separation. RSC Adv. 2016, 6, 87332–87340. [Google Scholar] [CrossRef]
- Rafiq, A.; Bhatti, I.A.; Tahir, A.A.; Ashraf, M.; Bhatti, H.N.; Zia, M.A. Solar photocatalytic treatment of textile effluent for its potential reuse in irrigation. Pak. J. Agric. Sci. 2019, 56, 993–1001. [Google Scholar]
- Morshed, M.N.; Behary, N.; Bouazizi, N.; Guan, J.; Chen, G.; Nierstrasz, V. Surface modification of polyester fabric using plasma-dendrimer for robust immobilization of glucose oxidase enzyme. Sci. Rep. 2019, 9, 15730. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.Y.; Cram, L.A. Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Text. Res. J. 1998, 68, 311–319. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Lin, N.; Xie, Y.; Bai, S.; Lin, Z.; Lu, L.; Tang, Y. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing. Mater. Chem. Phys. 2020, 251, 123083. [Google Scholar] [CrossRef]
- Mokhothu, H.T.; John, M.J. Bio-based coatings for reducing water sorption in natural fibre reinforced composites. Sci. Rep. 2017, 7, 13335. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Tisserat, B.H. Coating applications to natural fiber composites to improve their physical, surface and water absorption characters. Ind. Crops Prod. 2018, 112, 196–199. [Google Scholar] [CrossRef]
- Neves, A.I.; Rodrigues, D.P.; De Sanctis, A.; Alonso, E.T.; Pereira, M.S.; Amaral, V.S.; Melo, L.V.; Russo, S.; de Schrijver, I.; Alves, H.; et al. Towards conductive textiles: Coating polymeric fibres with graphene. Sci. Rep. 2017, 7, 4250. [Google Scholar] [CrossRef]
- Ishaq, T.; Yousaf, M.; Bhatti, I.A.; Ahmad, M.; Ikram, M.; Khan, M.U.; Qayyum, A. Photo-assisted splitting of water into hydrogen using visible-light activated silver doped g-C3N4 & CNTs hybrids. Int. J. Hydrogen Energy 2020, 45, 31574–31584. [Google Scholar]
- Ashar, A.; Bhatti, I.A.; Ashraf, M.; Tahir, A.A.; Aziz, H.; Yousuf, M.; Ahmad, M.; Mohsin, M.; Bhutta, Z.A. Fe3+@ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J. Clean. Prod. 2020, 246, 119010. [Google Scholar] [CrossRef]
- Shafiquea, A.; Bhattia, I.A.; Ashara, A.; Mohsina, M.; Ahmadc, S.A.; Nisard, J.; Javede, T.; Iqbal, M. FeVO4 nanoparticles synthesis, characterization and photocatalytic activity evaluation for the degradation of 2-chlorophenol. Desalin. Water Treat. 2020, 187, 399–409. [Google Scholar] [CrossRef]
- Jilani, A.; Rehman, G.U.; Ansari, M.O.; Othman, M.H.D.; Hussain, S.Z.; Dustgeer, M.R.; Darwesh, R. Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: A mechanistic study. New J. Chem. 2020, 44, 19570–19580. [Google Scholar] [CrossRef]
- Mohsin, M.; Bhatti, I.A.; Ashar, A.; Mahmood, A.; Ul Hassan, Q.; Iqbal, M. Fe/ZnO@ ceramic fabrication for the enhanced photocatalytic performance under solar light irradiation for dye degradation. J. Mater. Res. Technol. 2020, 9, 4218–4229. [Google Scholar] [CrossRef]
- Inderyas, A.; Bhatti, I.A.; Ashar, A.; Ashraf, M.; Ghani, A.; Yousaf, M.; Mohsin, M.; Ahmad, M.; Rafique, S.; Masood, N.; et al. Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irardiation. Mater. Res. Express 2020, 7, 025033. [Google Scholar] [CrossRef]
- Sohail, I.; Bhatti, I.A.; Ashar, A.; Sarim, F.M.; Mohsin, M.; Naveed, R.; Yasir, M.; Iqbal, M.; Nazir, A. Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. J. Mater. Res. Technol. 2020, 9, 498–506. [Google Scholar] [CrossRef]
- Anju, A.S.P.; Bechan, S. Water pollution with special reference to pesticide contamination in India. J. Water Resour. Prot. 2010, 2, 432–448. [Google Scholar]
- Parveen, S.; Bhatti, I.A.; Ashar, A.; Javed, T.; Mohsin, M.; Hussain, M.T.; Khan, M.I.; Naz, S.; Iqbal, M. Synthesis, characterization and photocatalytic performance of iron molybdate (Fe2 (MoO4)3) for the degradation of endosulfan pesticide. Mater. Res. Express 2020, 7, 035016. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Mohsin, M.; Bhatti, I.A.; Ashar, A.; Khan, M.W.; Farooq, M.U.; Khan, H.; Hussain, M.T.; Loomba, S.; Mohiuddin, M.; Zavabeti, A.; et al. Iron-doped zinc oxide for photocatalyzed degradation of humic acid from municipal wastewater. Appl. Mater. Today 2021, 23, 101047. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Avella, E.; Ramírez-Zamora, R.M.; Schouwenaars, R. Metallurgical wastes employed as catalysts and photocatalysts for water treatment: A review. Sustainability 2019, 11, 2470. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 2018, 57, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Emeline, A.V.; Rudakova, A.V.; Sakai, M.; Murakami, T.; Fujishima, A. Factors affecting UV-induced superhydrophilic conversion of a TiO2 surface. J. Phys. Chem. C 2013, 117, 12086–12092. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Wang, Y.; Yang, X.; Jung, J.; Li, Z.; Ren, X.; Sun, Y. Fabrication of pH-responsive hydrophobic/hydrophilic antibacterial polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes for biomedical application. Mater. Chem. Phys. 2021, 260, 124087. [Google Scholar] [CrossRef]
- Ashraf, M.; Campagne, C.; Perwuelz, A.; Champagne, P.; Leriche, A.; Courtois, C. Development of superhydrophilic and superhydrophobic polyester fabric by growing zinc oxide nanorods. J. Colloid Interface Sci. 2013, 394, 545–553. [Google Scholar] [CrossRef]
- Atasağun, H.; Okur, A.; Akkan, T.; Akkan, L.Ö. A test apparatus to measure vertical wicking of fabrics—A case study on shirting fabrics. J. Text. Inst. 2016, 107, 1483–1489. [Google Scholar] [CrossRef]
- Ferrero, F. Wettability measurements on plasma treated synthetic fabrics by capillary rise method. Polym. Test. 2003, 22, 571–578. [Google Scholar] [CrossRef]
- Nithya, E.; Radhai, R.; Rajendran, R.; Shalini, S.; Rajendran, V.; Jayakumar, S. Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr. Polym. 2011, 83, 1652–1658. [Google Scholar] [CrossRef]
- Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B 2003, 107, 1028–1035. [Google Scholar] [CrossRef]
- Koishi, T.; Yasuoka, K.; Fujikawa, S.; Zeng, X.C. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: A molecular dynamics simulation study. ACS Nano 2011, 5, 6834–6842. [Google Scholar] [CrossRef]
- Abdi, Y.; Khalilian, M.; Arzi, E. Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage. J. Phys. D Appl. Phys. 2011, 44, 255405. [Google Scholar] [CrossRef]
- Belessiotis, V.; Kalogirou, S.; Delyannis, E.; Belessiotis, V.; Kalogirou, S.; Delyannis, E. Chapter six–indirect solar desalination (MSF, MED, MVC, TVC). Therm. Sol. Desalin. 2016, 283–326. [Google Scholar] [CrossRef]
- Chang, C.; Tao, P.; Xu, J.; Fu, B.; Song, C.; Wu, J.; Shang, W.; Deng, T. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux. ACS Appl. Mater. Interfaces 2019, 11, 18466–18474. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Long, Z.; Zhang, C.; Ma, Y.; Hao, X.; Zhang, H.; Pan, C. Photodegradation of imidacloprid in aqueous solution by the metal-free catalyst graphitic carbon nitride using an energy-saving lamp. J. Agric. Food Chem. 2015, 63, 4754–4760. [Google Scholar] [CrossRef]
- Jilani, A.; Hussain, S.Z.; Ansari, M.O.; Kumar, R.; Dustgeer, M.R.; Othman, M.H.D.; Barakat, M.A.; Melaibari, A.A. Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: An efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. J. Mater. Sci. 2021, 56, 7434–7450. [Google Scholar] [CrossRef]
- De Leeuw, N.H.; Parker, S.C. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B 1998, 102, 2914–2922. [Google Scholar] [CrossRef]
- Nadeem, F.; Bhatti, I.A.; Ashar, A.; Yousaf, M.; Iqbal, M.; Mohsin, M.; Nisar, J.; Tamam, N.; Alwadai, N. Eco-benign biodiesel production from waste cooking oil using eggshell derived MM-CaO catalyst and condition optimization using RSM approach. Arab. J. Chem. 2021, 14, 103263. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.; Wang, H.; Wang, J. Crystallization control of CaCO3 by ionic liquids in aqueous solution. Cryst. Growth Des. 2009, 9, 4984–4986. [Google Scholar] [CrossRef]
- Barhoum, A.; Van Assche, G.; Makhlouf, A.S.H.; Terryn, H.; Baert, K.; Delplancke, M.P.; El-Sheikh, S.M.; Rahier, H. A green, simple chemical route for the synthesis of pure nanocalcite crystals. Cryst. Growth Des. 2015, 15, 573–580. [Google Scholar] [CrossRef]
- Noah, A.Z.; El Semary, M.A.; Youssef, A.M.; El-Safty, M.A. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egypt. J. Pet. 2017, 26, 33–40. [Google Scholar]
- Dustgeer, M.R.; Asma, S.T.; Jilani, A.; Raza, K.; Hussain, S.Z.; Shakoor, M.B.; Iqbal, J.; Abdel-wahab, M.S.; Darwesh, R. Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: Structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorg. Chem. Commun. 2021, 128, 108606. [Google Scholar] [CrossRef]
- Widyastuti, S. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017. [Google Scholar]
- Ramasamy, V.; Anand, P.; Suresh, G. Biomimetic synthesis and characterization of precipitated CaCO3 nanoparticles using different natural carbonate sources: A novel approach. Int. J. Mater. Sci. 2017, 12, 499–511. [Google Scholar]
- Xu, B.; Toffolo, M.B.; Regev, L.; Boaretto, E.; Poduska, K.M. Structural differences in archaeologically relevant calcite. Anal. Methods 2015, 7, 9304–9309. [Google Scholar] [CrossRef] [Green Version]
- Toffolo, M.B.; Regev, L.; Dubernet, S.; Lefrais, Y.; Boaretto, E. FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis. Minerals 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Skvarla, J.; Luxbacher, T.; Nagy, M.; Sisol, M. Relationship of surface hydrophilicity, charge, and roughness of PET foils stimulated by incipient alkaline hydrolysis. ACS Appl. Mater. Interfaces 2010, 2, 2116–2127. [Google Scholar] [CrossRef]
- Elnagar, K.; Elmaaty, T.A.; Raouf, S. Dyeing of polyester and polyamide synthetic fabrics with natural dyes using ecofriendly technique. J. Text. 2014, 2014, 363079. [Google Scholar] [CrossRef] [Green Version]
- Ban, M.; Luxbacher, T.; Lützenkirchen, J.; Viani, A.; Bianchi, S.; Hradil, K.; Rohatsch, A.; Castelvetro, V. Evolution of calcite surfaces upon thermal decomposition, characterized by electrokinetics, in-situ XRD, and SEM. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126761. [Google Scholar] [CrossRef]
- Fokoua, E.N.; Poletti, F.; Richardson, D.J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Opt. Express 2012, 20, 20980–20991. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J. Optical properties, band gap, and surface roughness of Si3N4. Phys. Status Solidi 1977, 39, 411–418. [Google Scholar] [CrossRef]
- Nakamura, M.; Sirghi, L.; Aoki, T.; Hatanaka, Y. Study on hydrophilic property of hydro-oxygenated amorphous TiOx: OH thin films. Surf. Sci. 2002, 507, 778–782. [Google Scholar] [CrossRef]
- Wang, R.; Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 1999, 103, 2188–2194. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, J.; Phua, S.L.; Zhao, C.; Thomas, N.L.; Lu, X. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push–pull effects for moisture wicking. ACS Appl. Mater. Interfaces 2014, 6, 14087–14095. [Google Scholar] [CrossRef] [Green Version]
- Al Mahrouqi, D.; Vinogradov, J.; Jackson, M.D. Zeta potential of artificial and natural calcite in aqueous solution. Adv. Colloid Interface Sci. 2017, 240, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.Q.; Cheng, Z.M.; Zhou, Z.M.; Yuan, W.K.; Semiat, R. Zeta potential on the anti-scalant modified sub-micro calcite surface. Colloids Surf. A Physicochem. Eng. Asp. 2008, 328, 60–66. [Google Scholar] [CrossRef]
- Grover, I.S.; Singh, S.; Pal, B. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes. Appl. Surf. Sci. 2013, 280, 366–372. [Google Scholar] [CrossRef]
- Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010, 8, 279–285. [Google Scholar] [CrossRef]
- Kılıç, S. Synthesis of stable nano calcite. J. Turk. Chem. Soc. Sect. A Chem. 2018, 5, 869–880. [Google Scholar] [CrossRef]
- Chuang, H.-Y.; Chen, D.-H. Fabrication and photocatalytic activities in visible and UV light regions of Ag@ TiO2 and NiAg@ TiO2 nanoparticles. Nanotechnology 2009, 20, 105704. [Google Scholar] [CrossRef]
- Guan, H.; Chi, D.; Yu, J.; Li, X. A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic. Biochem. Physiol. 2008, 92, 83–91. [Google Scholar] [CrossRef]
- Li, S.; Leroy, P.; Heberling, F.; Devau, N.; Jougnot, D.; Chiaberge, C. Influence of surface conductivity on the apparent zeta potential of calcite. J. Colloid Interface Sci. 2016, 468, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Ashar, A.; Bhatti, I.A.; Siddique, T.; Ibrahim, S.M.; Mirza, S.; Bhutta, Z.A.; Shoaib, M.; Ali, M.; Taj, M.B.; Iqbal, M.; et al. Integrated hydrothermal assisted green synthesis of ZnO nano discs and their water purification efficiency together with antimicrobial activity. J. Mater. Res. Technol. 2021, 15, 6901–6917. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.H.; Liu, Z.K.; Mo, S.K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Box, G.E.; Draper, N.R. Response Surfaces, Mixtures, and Ridge Analyses; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 649. [Google Scholar]
- Mohsin, M.; Bhatti, I.A.; Iqbal, M.; Naz, S.; Ashar, A.; Nisar, J.; Al-Fawzan, F.F.; Alissa, S.A. Oxidative degradation of erythromycin using calcium carbonate under UV and solar light irradiation: Condition optimized by response surface methodology. J. Water Process Eng. 2021, 44, 102433. [Google Scholar] [CrossRef]
- Im, J.K.; Cho, I.H.; Kim, S.K.; Zoh, K.D. Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination 2012, 285, 306–314. [Google Scholar] [CrossRef]
- Li, H.; Gong, Y.; Huang, Q.; Zhang, H. Degradation of Orange II by UV-assisted advanced Fenton process: Response surface approach, degradation pathway, and biodegradability. Ind. Eng. Chem. Res. 2013, 52, 15560–15567. [Google Scholar] [CrossRef]
- Sanches, S.; Crespo, M.T.B.; Pereira, V.J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Res. 2010, 44, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Pelizzetti, E. Concluding remarks on heterogeneous solar photocatalysis. Sol. Energy Mater. Sol. Cells 1995, 38, 453–457. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Miguel, N.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic degradation of pesticides in natural water: Effect of hydrogen peroxide. Int. J. Photoenergy 2012, 2012, 371714. [Google Scholar] [CrossRef]
- Nadeem, N.; Abbas, Q.; Yaseen, M.; Jilani, A.; Zahid, M.; Iqbal, J.; Murtaza, A.; Janczarek, M.; Jesionowski, T. Coal fly ash-based copper ferrite nanocomposites as potential heterogeneous photocatalysts for wastewater remediation. Appl. Surf. Sci. 2021, 565, 150542. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Yang, Z.; Shen, W.; Ai, Z.; Zhang, L. Oxygen vacancy associated surface Fenton chemistry: Surface structure dependent hydroxyl radicals generation and substrate dependent reactivity. Environ. Sci. Technol. 2017, 51, 5685–5694. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Kumar, R. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds. Appl. Surf. Sci. 2016, 364, 51–60. [Google Scholar] [CrossRef]
- Lannoo, M. The role of dangling bonds in the properties of surfaces and interfaces of semiconductors. Rev. Phys. Appliquée 1990, 25, 887–894. [Google Scholar] [CrossRef]
- Shaheen, M.; Bhatti, I.A.; Ashar, A.; Mohsin, M.; Nisar, J.; Almoneef, M.M.; Iqbal, M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z. Phys. Chem. 2021, 235. [Google Scholar] [CrossRef]
- Al-Rimawi, F. A HPLC-UV method for determination of three pesticides in water. Int. J. Adv. Chem. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Iqbal, S.; Uddin, R.; Saied, S.; Ahmed, M.; Abbas, M.; Aman, S. Extraction, cleanup, and chromatographic determination of imidacloprid residues in wheat. Bull. Environ. Contam. Toxicol. 2012, 88, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Wamhoff, H.; Schneider, V. Photodegradation of imidacloprid. J. Agric. Food Chem. 1999, 47, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Quintás, G.; Armenta, S.; Garrigues, S.; Guardia, M.D.L. Fourier transform infrared determination of imidacloprid in pesticide formulations. J. Braz. Chem. Soc. 2004, 15, 307–312. [Google Scholar] [CrossRef]
- Phugare, S.S.; Kalyani, D.C.; Gaikwad, Y.B.; Jadhav, J.P. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem. Eng. J. 2013, 230, 27–35. [Google Scholar] [CrossRef]
Factor | Variables | Units | Low Actual | High Actual |
---|---|---|---|---|
X1 | Sunlight | Hours (h) | 1 | 5 |
X2 | pH | --- | 9 | 13 |
X3 | Oxidant Concentration of H2O2 | mM | 10 | 50 |
Functionalized Polyester Fabric | Angles between Solid Surface of Nanocalcite @ PF and Liquid Surface | Average of Angles between Solid Surface of Nanocalcite @ PF and Liquid Surface | |
---|---|---|---|
As-fabricated | θ1 | θ2 | |
141.72° | 133.36° | 137.54° | |
Basic prewetted | 47.84° | 48.55° | 48.195° |
Acidic prewetted | 88.64° | 85.74° | 87.19° |
Run | X1 | X2 | X3 | Degradation (%) |
---|---|---|---|---|
1. | 1.00 | 13.00 | 10 | 43.1 |
2. | 3.00 | 11.00 | 30.00 | 60.14 |
3. | 5.00 | 13.00 | 50.00 | 32 |
4. | 3.00 | 14.00 | 30.00 | 42.4 |
5. | 0.36 | 11.00 | 30.00 | 42.07 |
6. | 3.00 | 11.00 | 30.00 | 60.14 |
7. | 3.00 | 11.00 | 63.64 | 35.66 |
8. | 3.00 | 11.00 | 30.00 | 60.22 |
9. | 1.00 | 9.00 | 50.00 | 39.65 |
10. | 1.00 | 9.00 | 10.00 | 42.39 |
11. | 5.00 | 13.00 | 10.00 | 58.98 |
12. | 3.00 | 11.00 | 30.00 | 60.14 |
13. | 3.00 | 11.00 | 30.00 | 63.34 |
14. | 5.00 | 9.00 | 50.00 | 40 |
15. | 1.00 | 13.00 | 50.00 | 32.2 |
16. | 5.00 | 9.00 | 10.00 | 42.44 |
17. | 3.00 | 11.00 | 3.64 | 49 |
18. | 3.00 | 11.00 | 30.00 | 69.21 |
19. | 6.36 | 11.00 | 30.00 | 36.76 |
20. | 3.00 | 7.64 | 30.00 | 47.5 |
Source | Sum of Squares | d.f | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 2258.737 | 9 | 250.9708 | 11.93604 | 0.0003 | significant |
Irradiation Time (X1) | 37.28524 | 1 | 37.28524 | 1.773267 | 0.2125 | |
pH (X2) | 9.351642 | 1 | 9.351642 | 0.444759 | 0.5199 | |
Oxidant Conc.(X3) | 218.3313 | 1 | 218.3313 | 10.38372 | 0.0091 | |
(X1, X2) | 29.1848 | 1 | 29.1848 | 1.388014 | 0.2660 | |
(X1, X3) | 31.12605 | 1 | 31.12605 | 1.480339 | 0.2517 | |
(X2, X3) | 133.6613 | 1 | 133.6613 | 6.356861 | 0.0303 | |
X12 | 848.4032 | 1 | 848.4032 | 40.34962 | <0.0001 | |
X22 | 393.8509 | 1 | 393.8509 | 18.73135 | 0.0015 | |
X32 | 487.3713 | 1 | 487.3713 | 23.17913 | 0.0007 | |
Residual | 210.263 | 10 | 21.0263 | |||
Lack of Fit | 143.1721 | 5 | 28.63442 | 2.134002 | 0.2126 | not significant |
Pure Error | 67.09088 | 5 | 13.41818 | |||
Core total | 2469 | 19 | ||||
Std Dev. = 4.59 | C.V. = 9.28% | R2 = 0.9148 | Adj R2 = 0.8382 |
Peak # | Ret.Time (min.) | Type | Width (min.) | Area (mAU*s) | Height (mAU) | Area % |
---|---|---|---|---|---|---|
Before Deg. | 1.721 | BB | 0.0583 | 552.72260 | 86.23747 | 62.7727 |
After Deg. | 1.309 | BB | 0.3846 | 327.79218 | 17.59007 | 37.2273 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qayyum, A.; Bhatti, I.A.; Ashar, A.; Jilani, A.; Iqbal, J.; Mohsin, M.; Ishaq, T.; Muhammad, S.; Wageh, S.; Dustgeer, M.R. Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric. Polymers 2022, 14, 295. https://doi.org/10.3390/polym14020295
Qayyum A, Bhatti IA, Ashar A, Jilani A, Iqbal J, Mohsin M, Ishaq T, Muhammad S, Wageh S, Dustgeer MR. Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric. Polymers. 2022; 14(2):295. https://doi.org/10.3390/polym14020295
Chicago/Turabian StyleQayyum, Ayesha, Ijaz Ahmad Bhatti, Ambreen Ashar, Asim Jilani, Javed Iqbal, Muhammad Mohsin, Tehmeena Ishaq, Shabbir Muhammad, S. Wageh, and Mohsin Raza Dustgeer. 2022. "Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric" Polymers 14, no. 2: 295. https://doi.org/10.3390/polym14020295