Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the NCH+Zn Dispersion
2.3. Modification of Viscose Fabric by Using a Dielectric Barrier Discharge
2.4. Functionalization of Viscose Fabrics with NCH+Zn
2.5. Washing of Viscose Fabrics Functionalized with NCH+Zn
2.6. Characterization of Chitosan/Zinc Nanoparticles
2.6.1. Zeta Potential and Hydrodynamic Diameter Determination
2.6.2. Atomic Force Microscopy (AFM)
2.7. Characterization of Viscose Fabrics
2.7.1. Zeta Potential Determination
2.7.2. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.7.3. Carboxyl and Aldehyde Group Content Determination
2.7.4. Scanning Electron Microscopy (SEM)
2.7.5. Breaking Strength Determination
2.7.6. Elemental Analysis
2.7.7. Inductively-Coupled Plasma Optical Emission Spectrometry (ICP-OES)
2.7.8. The Absorbent Capacity Determination
2.7.9. Antibacterial Activity Determination
3. Results and Discussion
3.1. Characterization of Chitosan/Zinc Nanoparticles
3.2. Characterization of Unmodified and DBD-Modified Viscose Fabrics
3.3. Characterization of Unmodified and DBD-Modified Viscose Fabrics Functionalized with Chitosan Nanoparticles with Incorporated Zinc
3.4. Washing Durability of Unmodified and DBD-Modified Viscose Fabrics Functionalized with Chitosan Nanoparticles with Incorporated Zinc
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, H.; Murray, R. Medical Textiles. Text. Prog. 2020, 52, 1–127. [Google Scholar] [CrossRef]
- Tan, M.; Xu, Y.; Gao, Z.; Yuan, T.; Liu, Q.; Yang, R.; Zhang, B.; Peng, L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Adv. Mater. 2022, 34, 2108491. [Google Scholar] [CrossRef] [PubMed]
- Lozo, M.; Penava, Ž.; Lovričević, I.; Vrljičak, Z. The Structure and Compression of Medical Compression Stockings. Materials 2022, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Upadhyay, A.; Sayson, D.; Nguyen, B.H.; Tran, S.D. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2022, 27, 165. [Google Scholar] [CrossRef] [PubMed]
- Korica, M.; Peršin, Z.; Trifunović, S.; Mihajlovski, K.; Nikolić, T.; Maletić, S.; Fras Zemljič, L.; Kostić, M.M. Influence of Different Pretreatments on the Antibacterial Properties of Chitosan Functionalized Viscose Fabric: TEMPO Oxidation and Coating with TEMPO Oxidized Cellulose Nanofibrils. Materials 2019, 12, 3144. [Google Scholar] [CrossRef] [Green Version]
- Korica, M.; Peršin, Z.; Fras Zemljič, L.; Mihajlovski, K.; Dojčinović, B.; Trifunović, S.; Vesel, A.; Nikolić, T.; Kostić, M.M. Chitosan Nanoparticles Functionalized Viscose Fabrics as Potentially Durable Antibacterial Medical Textiles. Materials 2021, 14, 3762. [Google Scholar] [CrossRef]
- Danai, A. Textile-Based Medical Waste Generated in Hospitals. J. Crit. Rev. 2021, 8, 432–439. [Google Scholar]
- Mendoza, R.; Oliva, J.; Padmasree, K.P.; Oliva, A.I.; Mtz-Enriquez, A.I.; Zakhidov, A. Highly Efficient Textile Supercapacitors Made with Face Masks Waste and Thermoelectric Ca3Co4O9-δ oxide. J. Energy Storage 2022, 46, 103818. [Google Scholar] [CrossRef]
- Sidorova, N.G.; Druzhinina, A.R. Disposal of Medical Waste in the COVID-19 and the Post-COVID Period. In Post-COVID Economic Revival; Osipov, V.S., Ed.; Springer International Publishing: New York, NY, USA, 2022; Volume 2, pp. 51–71. [Google Scholar] [CrossRef]
- Strnad, S.; Šauperl, O.; Fras-Zemljič, L. Cellulose FibresFunctionalised by Chitosan: Characterization and Application. In Biopolymers; Elnashar, M., Ed.; In Tech: Rijeka, Croatia, 2010; pp. 181–200. [Google Scholar]
- Korica, M. Obtaining of Bioactive Nanostructured Materials Based on Cellulose and Chitosan. Ph.D. Thesis, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia, November 2020. (In Serbian). [Google Scholar]
- Shirvan, A.R.; Nouri, A. Medical textiles. In Advances in Functional and Protective Textiles; Ul-Islam, S., Butola, B.S., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 291–333. [Google Scholar] [CrossRef]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial Textile: Recent Developments and Functional Perspective. Polym. Bull. 2022, 79, 5747–5771. [Google Scholar] [CrossRef]
- Naseri-Nosar, M.; Ziora, Z.M. Wound Dressings from Naturally-Occurring Polymers: A Review on Homopolysaccharide-Based Composites. Carbohydr. Polym. 2018, 189, 379–398. [Google Scholar] [CrossRef]
- Fras Zemljič, L.; Peršin, Z.; Šauperl, O.; Rudolf, A.; Kostić, M. Medical Textiles Based on Viscose Rayon Fabrics Coated with Chitosan-Encapsulated Iodine: Antibacterial and Antioxidant Properties. Text. Res. J. 2018, 88, 2519–2531. [Google Scholar] [CrossRef]
- Fras Zemljic, L.; Sauperl, O.; But, I.; Zabret, A.; Lusicky, M. Viscose Material Functionalized by Chitosan as a Potential Treatment in Gynecology. Text. Res. J. 2011, 81, 1183–1190. [Google Scholar] [CrossRef]
- Fras Zemljič, L.; Volmajer, J.; Ristić, T.; Bracic, M.; Sauperl, O.; Kreže, T. Antimicrobial and Antioxidant Functionalization of Viscose Fabric Using Chitosan–Curcumin Formulations. Text. Res. J. 2013, 84, 819–830. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A. Chitosan as a Biomedical Material: Properties and Applications. In Biopolymers: Structure, Performance and Applications; Kumar, M.A., Mustansar, H.C., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 139–153. [Google Scholar]
- Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Mumtaz, S.; Ali, S.; Mumtaz, S.; Mughal, T.A.; Tahir, H.M.; Shakir, H.A. Chitosan Conjugated Silver Nanoparticles: The Versatile Antibacterial Agents. Polym. Bull. 2022, 3, 4321. [Google Scholar] [CrossRef]
- Du, W.-L.; Niu, S.-S.; Xu, Y.-L.; Xu, Z.-R.; Fan, C.-L. Antibacterial Activity of Chitosan Tripolyphosphate Nanoparticles Loaded with Various Metal Ions. Carbohydr. Polym. 2009, 75, 385–389. [Google Scholar] [CrossRef]
- Hussein, M.A.M.; Grinholc, M.; Dena, A.S.A.; El-Sherbiny, I.M.; Megahed, M. Boosting the Antibacterial Activity of Chitosan–Gold Nanoparticles Against Antibiotic–Resistant Bacteria by Punicagranatum L. extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial Activities of Chitosan/Titanium Dioxide Composites as a Biological Nanolayer for Food Preservation: A Review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef]
- Kramar, A.D. Surface Modification of Cellulose fibers Using Dielectric Barrier Discharge. Ph.D. Thesis, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia, 2015. (In Serbian). [Google Scholar]
- Zhang, W.; Xu, X.; Wei, F.; Zou, X.; Zhang, Y. Influence of Dielectric Barrier Discharge Treatment on Surface Structure of Polyoxymethylene Fiber and Interfacial Interaction with Cement. Materials 2018, 11, 1873. [Google Scholar] [CrossRef]
- Levchenko, I.; Xu, S.; Baranov, O.; Bazaka, O.; Ivanova, E.P.; Bazaka, K. Plasma and Polymers: Recent Progress and Trends. Molecules 2021, 26, 4091. [Google Scholar] [CrossRef]
- Almoudi, M.M.; Hussein, A.S.; Abu Hassan, M.I.; Mohamad Zain, N. A Systematic Review on Antibacterial Activity of Zinc Against Streptococcus Mutans. Saudi Dent. J. 2018, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhuang, S. Antibacterial Activity of Chitosan and its Derivatives and Their Interaction Mechanism with Bacteria: Current State and Perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Loutfy, S.A.; Elberry, M.H.; Farroh, K.Y.; Mohamed, H.T.; Mohamed, A.A.; Mohamed, E.B.; Faraag, A.H.I.; Mousa, S.A. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. Int. J. Nanomed. 2020, 15, 2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.A.; Chaves, P.S.; D’Amore, C.M.; Contri, R.V.; Frank, A.G.; Beck, R.C.R.; Pohlmann, A.R.; Buffona, A.; Guterresa, S.S. The Use of Chitosan as Cationic Coating or Gel Vehicle for Polymeric Nanocapsules: Increasing Penetration and Adhesion of Imiquimod in Vaginal Tissue. Eur. J. Pharm. Biopharm. 2017, 114, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, L.; Li, Y.; Zhang, X.; Xu, S.; Yang, G.; Delair, T. Chitosan-Based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydr. Polym. 2020, 238, 116126. [Google Scholar] [CrossRef]
- Jana, B.; Chatterjee, A.; Roy, D.; Ghorai, S.; Pan, D.; Kumar Pramanik, S.; Chakraborty, N.; Ganguly, J. Chitosan/Benzyloxy-Benzaldehyde Modified ZnO Nano Template Having Optimized and Distinct Antiviral Potency to Human Cytomegalovirus. Carbohydr. Polym. 2022, 278, 118965. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Lishchynskyi, O.; Shymborska, Y.; Stetsyshyn, Y.; Raczkowska, J.; Skirtach, A.G.; Peretiatko, T.; Budkowski, A. Passive Antifouling and Active Self-Disinfecting Antiviral Surfaces. Chem. Eng. J. 2022, 446, 137048. [Google Scholar] [CrossRef]
- Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Kumar Dutta, A.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol. Trace Elem. Res. 2021, 199, 2882–2892. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A Review of the Antiviral Activity of Chitosan, Including Patented Applications and its Potential use Against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Ejeromedoghene, O.; Oderinde, O.; Egejuru, G.; Adewuyi, S. Chitosan-Drug Encapsulation as a Potential Candidate for COVID-19 Drug Delivery Systems: A Review. J. Turk. Chem. Soc. A Chem. 2020, 7, 851–864. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and Respiratory Tract Infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejić, B.M.; Kramar, A.D.; Obradović, B.M.; Kuraica, M.M.; Žekić, A.A.; Kostić, M.M. Effect of Plasma Treatment on Chemical Composition, Structure and Sorption Properties of Lignocellulosic Hemp Fibers (Cannabis sativa L.). Carbohydr. Polym. 2020, 236, 116000. [Google Scholar] [CrossRef] [PubMed]
- Praskalo, J.; Kostic, M.; Potthast, A.; Popov, G.; Pejic, B.; Skundric, P. Sorption Properties of TEMPO-Oxidized Matural and Man-Made Cellulose Fibers. Carbohydr. Polym. 2009, 77, 791–798. [Google Scholar] [CrossRef]
- Peršin, Z.; Zaplotnik, R.; StanaKleinschek, K. Ammonia Plasma Treatment as a Method Promoting Simultaneous Hydrophilicity and Antimicrobial Activity of Viscose Wound Dressings. Text. Res. J. 2013, 84, 140–156. [Google Scholar] [CrossRef]
- Korica, M.; Fras Zemljič, L.; Bračić, M.; Kargl, R.; Spirk, S.; Reishofer, D.; Mihajlovski, K.; Kostić, M. Novel Protein-Repellent and Antimicrobial Polysaccharide Multilayer Thin Films. Holzforschung 2019, 73, 93–103. [Google Scholar] [CrossRef]
- Široký, J.; Blackburn, R.S.; Bechtold, T.; Taylor, J.; White, P. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy Analysis of Crystallinity Changes in Lyocell Following Continuous Treatment with Sodium Hydroxide. Cellulose 2010, 17, 103–115. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of Short-Time Vibratory Ball Milling on the Shape of FT-IR Spectra of Wood and Cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Coseri, S.; Biliuta, G.; Fras Zemljič, L.; StevanicSrndovic, J.; Larsson, P.-T.; Strnad, S.; Kreže, T.; Naderi, A.; Lindström, T. One-Shot Carboxylation of Microcrystalline Cellulose in the Presence of Nitroxyl Radicals and Sodium Periodate. RSC Adv. 2015, 5, 85889–85897. [Google Scholar] [CrossRef]
- Kramar, A.; Prysiazhnyi, V.; Dojčinović, B.; Mihajlovski, K.; Obradović, B.M.; Kuraica, M.M.; Kostić, M. Antimicrobial Viscose Fabric Prepared by Treatment in DBD and Subsequent Deposition of Silver and Copper Ions—Investigation of Plasma Aging Effect. Surf. Coat. Technol. 2013, 234, 92–99. [Google Scholar] [CrossRef]
- AbdJelil, R. A Review of Low-Temperature Plasma Treatment of Textile Materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Grande, R.; Trovatti, E.; Carvalho, A.J.F.; Gandini, A. Continuous Microfiber Drawing by Interfacial Charge Complexation Between Anionic Cellulose Nanofibers and Cationic Chitosan. J. Mater. Chem. 2017, 5, 13098–13103. [Google Scholar] [CrossRef]
- El-Sayed, E.M.; Tamer, T.M.; Omer, A.M.; MohyEldin, M.S. Development of Novel Chitosan Schiff Base Derivatives for Cationic Dye Removal: Methyl Orange Model. Desalin. Water Treat. 2016, 57, 22632–22645. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D.; Du, Z.; Li, J.; Wang, Y.; Yang, Z.; Peng, F. Structure and Properties of Silk Fibroin Grafted Carboxylic Cotton Fabric via Amide Covalent Modification. Carbohydr. Polym. 2017, 161, 99–108. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [Green Version]
- Goy, C.R.; Britto, D.; Assis, B.G.O. A Review of the Antimicrobial Activity of Chitosan. Polímeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.-A. The Contribution of Zinc Ions to the Antimicrobial Activity of Zinc Oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Shanmugam, A.; Kathiresan, K.; Nayak, L. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep. 2016, 9, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Preuss, H.G.; Echard, B.; Enig, M.; Brook, I.; Elliott, T.B. Minimum Inhibitory Concentrations of Herbal Essential Oils and Monolaurin for Gram-Positive and Gram-Negative Bacteria. Mol. Cell. Biochem. 2005, 272, 29–34. [Google Scholar] [CrossRef]
- Afolayan, A.J. Extracts from the Shoots of Arctotisarctotoides Inhibit the Growth of Bacteria and Fungi. Pharm. Biol. 2003, 41, 22–25. [Google Scholar] [CrossRef]
Description of Samples | Washing Cycles | |||
---|---|---|---|---|
0 | 1 | 3 | 5 | |
Unmodified viscose | VIS | - | - | - |
DBD-modified viscose | DBD VIS | - | - | - |
VIS functionalized with NCH+Zn | VIS/NCH+Zn | VIS/NCH+Zn/1 | VIS/NCH+Zn/3 | VIS/NCH+Zn/5 |
DBD VIS functionalized with NCH+Zn | DBD VIS/NCH+Zn | DBD VIS/NCH+Zn/1 | DBD VIS/NCH+Zn/3 | DBD VIS/NCH+Zn/5 |
Sample | Breaking Strength, N | |
---|---|---|
Warp Direction | Weft Direction | |
VIS | 225 ± 1.52 | 191 ± 3.06 |
DBD VIS | 234 ± 2.83 | 197 ± 2.83 |
VIS/NCH+Zn | 205 ± 3.11 | 171 ± 2.36 |
DBD VIS/NCH+Zn | 211 ± 4.91 | 178 ± 2.27 |
Sample | CS, mg/100 g Cellulose | Zn, µg/100 g Cellulose |
---|---|---|
VIS/NCH+Zn | 640.01 | 1858.41 |
DBD VIS/NCH+Zn | 1044.60 | 2421.50 |
VIS/NCH+Zn/1 | 571.03 | 184.00 |
VIS/NCH+Zn/3 | 459.61 | 33.54 |
VIS/NCH+Zn/5 | 320.33 | 20.36 |
DBD VIS/NCH+Zn/1 | 863.50 | 144.69 |
DBD VIS/NCH+Zn/3 | 557.10 | 24.84 |
DBD VIS/NCH+Zn/5 | 501.40 | 18.58 |
Sample | Bacterial Reduction, % | |
---|---|---|
S. aureus | E. coli | |
VIS/NCH+Zn | 99.90 | 99.99 |
DBD VIS/NCH+Zn | 99.99 | 99.99 |
VIS/NCH+Zn/1 | 91.67 | 4.30 |
VIS/NCH+Zn/3 | 86.12 | 3.85 |
VIS/NCH+Zn/5 | 85.83 | 3.84 |
DBD VIS/NCH+Zn/1 | 99.99 | 98.79 |
DBD VIS/NCH+Zn/3 | 99.86 | 42.31 |
DBD VIS/NCH+Zn/5 | 78.51 | 5.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korica, M.D.; Kramar, A.; Peršin Fratnik, Z.; Obradović, B.; Kuraica, M.M.; Dojčinović, B.; Fras Zemljič, L.; Kostić, M. Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge. Polymers 2022, 14, 4152. https://doi.org/10.3390/polym14194152
Korica MD, Kramar A, Peršin Fratnik Z, Obradović B, Kuraica MM, Dojčinović B, Fras Zemljič L, Kostić M. Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge. Polymers. 2022; 14(19):4152. https://doi.org/10.3390/polym14194152
Chicago/Turabian StyleKorica, Matea D., Ana Kramar, Zdenka Peršin Fratnik, Bratislav Obradović, Milorad M. Kuraica, Biljana Dojčinović, Lidija Fras Zemljič, and Mirjana Kostić. 2022. "Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge" Polymers 14, no. 19: 4152. https://doi.org/10.3390/polym14194152