Fibre–Wood Laminate Biocomposites: Seawater Immersion Effects on Flexural and Low Energy Impact Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Manufacturing
- The flax fibre reinforced bio-epoxy laminates (FFRB) with five plies, given a thickness of 3.82 ± 0.07 mm and a 28.8 ± 0.12% fibre content in volume.
- Flax fibre/wood veneer laminates (FWL) of three flax fibre plies in the core and a single pinewood in each of the outer layers (Figure 1a). The final nominal thickness was 3.2 ± 0.03 mm, and the fibre content was 30.6 ± 0.12% in volume.
2.2. Seawater Immersion
2.3. Three-Point Bending Tests
2.4. Low-Velocity Impact Tests
2.5. Scanning Electron Microscopy
3. Results and Discussion
3.1. Seawater Immersion
3.2. Three-Point Bending Properties
3.3. SEM Analysis
3.4. Low-Velocity Impact Tests
4. Conclusions
- The results of the three-point bending tests showed that hybridisation of the FRPP with thin wood veneers confers a highly anisotropic character to the resulting FWL. Thus, hybridisation could be beneficial in terms of stiffness and strength, as long as the wood grain and principal stress directions are aligned parallel to each other.
- During the infusion, the epoxy matrix filled the cellular structure of the wood, which acted as a barrier and reduced the water absorbed by the flax fibres.
- The protection of this matrix-impregnated wood veneer reduced the stiffness loss in seawater immersion situations, but the strength reduction is the same as in the net FFRB.
- Regarding the impact results, the wood veneer had a negative effect, since it reduced the penetration and perforation energy thresholds. The unidirectional wood grain of the thin veneer integrated into the FWL was at the origin of this weakening, so introducing several thin wood veneers with different grain orientations could improve the impact performances of the FWL. Thus, the FWL concept should be explored in thicker laminates with a higher amount of wood veneers and with different ply configurations.
- The impact results of the wet FFRB and FWL showed a trend opposite to the three-point bending quasi-statics, as the critical penetration and perforation energies increased. The improvement was noticeable for the FFRB and almost negligible for the FWL. Therefore, the seawater protective effect of the wood veneers was detrimental in the case of the FWL.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, C.; Vilatela, J.J.; Molina-Aldareguía, J.M.; Lopes, C.S.; Llorca, J. Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 2017, 89, 194–251. [Google Scholar] [CrossRef]
- Graham-Jones, J.; Summerscales, J. (Eds.) Ch1. Introduction. In Marine Applications of Advanced Fibre-Reinforced Composites, 1st ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 1–15. [Google Scholar]
- Kumar, S.; Manna, A.; Dang, R. A review on applications of natural Fibre-Reinforced composites (NFRCs). Mater. Today Proc. 2022, 50, 1632–1636. [Google Scholar] [CrossRef]
- Deepak, R.D.J.; Prabu, V.A.; Amuthakkannan, P.; Prasath, K.A. A review on biocomposites and bioresin based composites for potential industrial applications. Rev. Adv. Mater. Sci. 2017, 49, 112–121. [Google Scholar]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Wang, J.; Ding, L.; Zhang, K.; Han, J.; Jiang, S. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film. Carbohydr. Polym. 2022, 298, 120075. [Google Scholar] [CrossRef]
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos. Part B Eng. 2013, 52, 172–181. [Google Scholar] [CrossRef]
- Yan, L.B.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Environmental Impact Analysis of the Production of Flax Fibres to be Used as Composite Material Reinforcement. J. Biobased Mater. Bioenergy 2011, 5, 153–165. [Google Scholar] [CrossRef]
- Marrot, L.; Bourmaud, A.; Bono, P.; Baley, C. Multi-scale study of the adhesion between flax fibres and biobased thermoset matrices. Mater. Des. 2014, 62, 47–56. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fibre and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Khanlou, H.M.; Hall, W.; Ochsner, A.; Francucci, G. Environmental effects on the durability and the mechanical performance of flax fibre/bio-epoxy composites. Compos. Part B Eng. 2019, 171, 284–293. [Google Scholar] [CrossRef]
- Davies, P.; Arhant, M.; Grossmann, E. Seawater ageing of infused flax fibre reinforced acrylic composites. Compos. Part C Open Access 2022, 8, 100246. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Calabrese, L.; Valenza, A.; Proverbio, E. Effect of external basalt layers on durability behaviour of flax reinforced composites. Compos. Part B Eng. 2016, 84, 258–265. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Constr. Build. Mater. 2015, 99, 118–127. [Google Scholar] [CrossRef]
- Živković, I.; Fragassa, C.; Pavlović, A.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fibre reinforced green composites. Compos. Part B Eng. 2017, 111, 148–164. [Google Scholar] [CrossRef]
- Muneer Ahmed, M.; Dhakal, H.N.; Zhang, Z.Y.; Barouni, A.; Zahari, R. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Compos. Struct. 2021, 259, 113496. [Google Scholar] [CrossRef]
- Barouni, A.K.; Dhakal, H.N. Damage investigation and assessment due to low-velocity impact on flax/glass hybrid composite plates. Compos. Struct. 2019, 226, 111224. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Le Méner, E.; Feldner, M.; Jiang, C.; Zhang, Z. Falling Weight Impact Damage Characterisation of Flax and Flax Basalt Vinyl Ester Hybrid Composites. Polymers 2020, 12, 806. [Google Scholar] [CrossRef]
- Paturel, A.; Dhakal, H.N. Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules 2020, 25, 278. [Google Scholar] [CrossRef]
- Fragassa, C.; Pavlovic, A.; Santulli, C. Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos. Part B Eng. 2018, 137, 247–259. [Google Scholar] [CrossRef]
- Nisini, E.; Santulli, C.; Liverani, A. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos. Part B Eng. 2017, 127, 92–99. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillo, J.; D’Altilia, S.; Valente, T.; Santulli, C.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D.; Lampani, L.; Gaudenzi, P. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos. Part B Eng. 2016, 91, 144–153. [Google Scholar] [CrossRef]
- Barouni, A.; Lupton, C.; Jiang, C.; Saifullah, A.; Giasin, K.; Zhang, Z.; Dhakal, H.N. Investigation into the fatigue properties of flax fibre epoxy composites and hybrid composites based on flax and glass fibres. Compos. Struct. 2022, 281, 115046. [Google Scholar] [CrossRef]
- de Vicente, M.; Silva-Campillo, A.; Herreros, M.Á.; Suárez-Bermejo, J.C. Design of a structurally welded/adhesively bonded joint between a fibre metal laminate and a steel plate for marine applications. J. Mar. Sci. Technol. 2022, 27, 1002–1014. [Google Scholar] [CrossRef]
- Najafi, M.; Darvizeh, A.; Ansari, R. Effect of salt water conditioning on novel fibre metal laminates for marine applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1542–1554. [Google Scholar]
- Herreros, M.A.; Suárez, J.C.; Diez De Ulzurrun, I.; Meng, X. Malecon: A new fibre-metal hybrid laminated material for offshore renewable energy. In Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Bucci, V.; Corigliano, P.; Crupi, V.; Epasto, G.; Guglielmino, E.; Marinò, A. Experimental investigation on Iroko wood used in shipbuilding. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 128–139. [Google Scholar] [CrossRef]
- Sutherland, L.S. A review of impact testing on marine composite materials: Part I—Marine impacts on marine composites. Compos. Struct. 2018, 188, 197–208. [Google Scholar] [CrossRef]
- Sutherland, L.S. A review of impact testing on marine composite materials: Part II—Impact event and material parameters. Compos. Struct. 2018, 188, 503–511. [Google Scholar] [CrossRef]
- Sutherland, L.S. A review of impact testing on marine composite materials: Part III—Damage tolerance and durability. Compos. Struct. 2018, 188, 512–518. [Google Scholar] [CrossRef]
- Cuynet, A.; Scida, D.L.; Roux, É.; Toussaint, F.; Ayad, R.; Lagache, M. Damage characterisation of flax fibre fabric reinforced epoxy composites during low velocity impacts using high-speed imaging and Stereo Image Correlation. Compos. Struct. 2018, 202, 1186–1194. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Huq, N.M.L.; Öchsner, A.; Islam, M.M.; Francucci, G. Mechanical properties of flax fibre-reinforced composites at different relative humidities: Experimental, geometric, and displacement potential function approaches. Polym. Compos. 2020, 41, 4963–4973. [Google Scholar] [CrossRef]
- Feraboli, P.; Kedward, K.T. A new composite structure impact performance assessment program. Compos. Sci. Technol. 2006, 66, 1336–1347. [Google Scholar] [CrossRef]
- Taylor, C.; Amiri, A.; Paramartam, A.; Ulvena, C.; Webster, D. Development and weatherability of bio-based composites of structural quality using flax fibre and epoxidized sucrose soyate. Mater. Des. 2017, 113, 17–26. [Google Scholar] [CrossRef]
- Naghizadeh, Z.; Pol, M.H.; Alawode, A.O.; Faezipour, M.; Liaghat, G.H.; Via, B.K.; Abdolkhani, A. Performance Comparison of Wood, Plywood, and Oriented Strand Board under High-and Low-Velocity Impact Loadings. For. Prod. J. 2021, 71, 362–370. [Google Scholar] [CrossRef]
- Ravandi, M.; Teo, W.S.; Tran, L.Q.N.; Yong, M.S.; Tay, T.E. Low velocity impact performance of stitched flax/epoxy composite laminates. Compos. Part B Eng. 2017, 117, 89–100. [Google Scholar] [CrossRef]
- Todo, M.; Nakamura, T.; Takahashi, K. Effects of Moisture Absorption on the Dynamic Interlaminar Fracture Toughness of Carbon/Epoxy Composites. J. Compos. Mater. 2000, 34, 630–648. [Google Scholar] [CrossRef]
- Almansour, F.A.; Dhakal, H.N.; Zhang, Z.Y. Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Compos. Sci. Technol. 2018, 154, 117–127. [Google Scholar] [CrossRef] [Green Version]
Material | Before Seawater Immersion | After Seawater Immersion | ||||
---|---|---|---|---|---|---|
Ef (GPa) | σf (MPa) | εb (%) | Ef (GPa) | σf (MPa) | εb (%) | |
FFRB | 6.8 ± 1.1 | 115 ± 5.0 | 3.3 ± 0.1 | 5.2 ± 0.6 | 101 ± 5.0 | 3,7 ± 0.1 |
FWL0 | 8.7 ± 0.5 | 162 ± 4.9 | 2.4 ± 0.1 | 7.7 ± 0.1 | 143 ± 1.8 | 2.2 ± 0.3 |
FWL90 | 4.1 ± 0.6 | 81 ± 4.0 | 3.6 ± 0.1 | 3.7 ± 0.5 | 72 ± 4.0 | 3.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia, F.R.; Castillo-López, G.; Aurrekoetxea, J.; Lopez-Arraiza, A. Fibre–Wood Laminate Biocomposites: Seawater Immersion Effects on Flexural and Low Energy Impact Properties. Polymers 2022, 14, 4038. https://doi.org/10.3390/polym14194038
Valencia FR, Castillo-López G, Aurrekoetxea J, Lopez-Arraiza A. Fibre–Wood Laminate Biocomposites: Seawater Immersion Effects on Flexural and Low Energy Impact Properties. Polymers. 2022; 14(19):4038. https://doi.org/10.3390/polym14194038
Chicago/Turabian StyleValencia, Fabuer R., Germán Castillo-López, Jon Aurrekoetxea, and Alberto Lopez-Arraiza. 2022. "Fibre–Wood Laminate Biocomposites: Seawater Immersion Effects on Flexural and Low Energy Impact Properties" Polymers 14, no. 19: 4038. https://doi.org/10.3390/polym14194038
APA StyleValencia, F. R., Castillo-López, G., Aurrekoetxea, J., & Lopez-Arraiza, A. (2022). Fibre–Wood Laminate Biocomposites: Seawater Immersion Effects on Flexural and Low Energy Impact Properties. Polymers, 14(19), 4038. https://doi.org/10.3390/polym14194038