Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. MBR@LDHP-APES Preparation
2.3. Preparation of EP Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization
3.2. Thermal Stability of EP Composites
3.3. EP Composite’s Mechanical Characteristics
3.4. Flammability of EP Composites
3.5. Mechanisms Linked to Flame Retardancy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadowski, L.; Kampa, L.; Chowaniec, A.; Krolicka, A.; Zak, A.; Abdoulpour, H.; Vantadori, S. Enhanced adhesive performance of epoxy resin coating by a novel bonding agent. Constr. Build. Mater. 2021, 301, 124078. [Google Scholar] [CrossRef]
- Li, J.C.; Chen, P.; Wang, Y.; Wang, G.Y. Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes. Prog. Org. Coat. 2021, 158, 106388. [Google Scholar] [CrossRef]
- Zhang, D.W.; Huang, Y. The bonding performances of carbon nanotube (CNT)-reinforced epoxy adhesively bonded joints on steel substrates. Prog. Org. Coat. 2021, 159, 106407. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M. Adhesively bonded joints in composite materials: An overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009, 223, 1–18. [Google Scholar] [CrossRef]
- He, S.J.; Luo, C.M.; Zheng, Y.Z.; Xue, Y.; Song, X.P.; Lin, J. Improvement in the charge dissipation performance of epoxy resin composites by incorporating amino-modified boron nitride nanosheets. Mater. Lett. 2021, 298, 130009. [Google Scholar] [CrossRef]
- Xie, Q.; Liang, S.D.; Fu, K.X.; Liu, L.Z.; Huang, H.; Lu, F.C. Distribution of Polymer Surface Charge under DC Voltage and its Influence on Surface Flashover Characteristics. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2157–2168. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Lo Faro, C.; Recca, A. Improvement of thermomechanical properties of a DGEBS/DDS system blended with a novel thermoplastic copolymer by realization of a semi-IPN network. J. Appl. Polym. Sci. 2003, 88, 3021–3025. [Google Scholar] [CrossRef]
- Sousa, J.M.; Correia, J.R.; Cabral-Fonseca, S. Durability of an epoxy adhesive used in civil structural applications. Constr. Build. Mater. 2018, 161, 618–633. [Google Scholar] [CrossRef]
- Xu, W.Z.; Zhang, B.L.; Wang, X.L.; Wang, G.S.; Ding, D. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J. Hazard. Mater. 2018, 343, 364–375. [Google Scholar] [CrossRef]
- Liu, S.; Fang, Z.P.; Yan, H.Q.; Wang, H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016, 6, 5288–5295. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, J.; Peng, H.; Qu, H.Q.; Hao, J.W. Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. Polym. Degrad. Stab. 2014, 110, 395–404. [Google Scholar] [CrossRef]
- Zhang, W.C.; Li, X.M.; Fan, H.B.; Yang, R.J. Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins. Polym. Degrad. Stab. 2012, 97, 2241–2248. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Liu, Z.Q.; Yang, Y.X.; Jia, Y.C.; Li, J.S.; Wei, M.; Li, L.J.; Wang, D.Y. Magnesium hydroxide micro-whiskers as super-reinforcer to improve fire retardancy and mechanical property of epoxy resin. Polym. Compos. 2022, 43, 1996–2009. [Google Scholar] [CrossRef]
- Bao, X.H.; Wu, F.Y.; Wang, J.B. Thermal Degradation Behavior of Epoxy Resin Containing Modified Carbon Nanotubes. Polymers 2021, 13, 3332. [Google Scholar] [CrossRef] [PubMed]
- Bekeshev, A.; Mostovoy, A.; Kadykova, Y.; Akhmetova, M.; Tastanova, L.; Lopukhova, M. Development and Analysis of the Physicochemical and Mechanical Properties of Diorite-Reinforced Epoxy Composites. Polymers 2021, 13, 2421. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Tastanova, L.; Kadykova, Y.; Kalganova, S.; Lopukhova, M. Reinforcement of Epoxy Composites with Application of Finely-ground Ochre and Electrophysical Method of the Composition Modification. Polymers 2020, 12, 1437. [Google Scholar] [CrossRef]
- Zhou, S.; Tao, R.; Dai, P.; Luo, Z.Y.; He, M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polym. Compos. 2020, 41, 2025–2035. [Google Scholar] [CrossRef]
- Cui, S.H.; Zhang, R.; Peng, Y.T.; Gao, X.; Li, Z.; Fan, B.B.; Guan, C.Y.; Beiyuan, J.Z.; Zhou, Y.Y.; Liu, J.; et al. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. J. Hazard. Mater. 2021, 416, 126258. [Google Scholar] [CrossRef]
- Ma, X.R.; Wei, X.Y.; Dang, R.; Guo, W.; Kang, Y.H.; Li, X.; Gao, Y.; Bai, J.J.; Zhang, Y.; Zhang, Z.F.; et al. A simple, environmentally friendly synthesis of recyclable magnetic gamma-Fe2O3/Cd2+-Ni2+-Fe3+-CO32− layered double hydroxides for the removal of fluoride and cadmium ions. Adsorption capacity and the underlying mechanisms. Appl. Clay Sci. 2021, 211, 106191. [Google Scholar] [CrossRef]
- Hanif, A.; Sun, M.Z.; Wang, T.Q.; Shang, S.S.; Tsang, D.C.W.; Shang, J. Ambient NO2 adsorption removal by Mg-Al layered double hydroxides and derived mixed metal oxides. J. Clean Prod. 2021, 313, 127956. [Google Scholar] [CrossRef]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef] [PubMed]
- Gang, C.A.; Chen, J.Y.; Chen, Q.H.; Chen, Y.T. Heterostructure of ultrafine FeOOH nanodots supported on CoAl-layered double hydroxide nanosheets as highly efficient electrocatalyst for water oxidation. J. Colloid Interface Sci. 2021, 600, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Du, X.G.; Deng, J.Q.; Qi, K.; Zhang, J.D.; Gao, L.L.; Yue, X.P. Efficient degradation of Rhodamine B by magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides via activating peroxymonosulfate. J. Environ. Sci. 2021, 108, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Boumeriame, H.; Da Silva, E.S.; Cherevan, A.S.; Chafik, T.; Faria, J.L.; Eder, D. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. J. Energy Chem. 2022, 64, 406–431. [Google Scholar] [CrossRef]
- de Sousa, A.; dos Santos, W.M.; de Souza, M.L.; Silva, L.; Yun, A.; Aguilera, C.S.B.; Chagas, B.D.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Layered Double Hydroxides as Promising Excipients for Drug Delivery Purposes. Eur. J. Pharm. Sci. 2021, 165, 105922. [Google Scholar] [CrossRef]
- Alcantara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, K.Q.; Wang, B.B.; Gui, Z.; Hu, Y. Synthesis and Characterization of CuMoO4/Zn-Al Layered Double Hydroxide Hybrids and Their Application as a Reinforcement in Polypropylene. Ind. Eng. Chem. Res. 2014, 53, 12355–12362. [Google Scholar] [CrossRef]
- Li, X.Y.; Guo, M.; Bandyopadhyay, P.; Lan, Q.; Xie, H.Q.; Liu, G.Y.; Liu, X.D.; Cheng, X.F.; Kim, N.H.; Lee, J.H. Two-dimensional materials modified layered double hydroxides: A series of fillers for improving gas barrier and permselectivity of poly(vinyl alcohol). Compos. Part B Eng. 2021, 207, 108568. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, X.L.; Liu, Y.C.; Li, W.; Chen, R. Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide. Polym. Degrad. Stab. 2018, 154, 27–36. [Google Scholar] [CrossRef]
- Shabanian, M.; Basaki, N.; Khonakdar, H.A.; Jafari, S.H.; Hedayati, K.; Wagenknecht, U. Novel nanocomposites consisting of a semi-crystalline polyamide and Mg-Al LDH: Morphology, thermal properties and flame retardancy. Appl. Clay Sci. 2014, 90, 101–108. [Google Scholar] [CrossRef]
- Yao, M.; Wu, H.J.; Liu, H.; Zhou, Z.X.; Wang, T.; Jiao, Y.H.; Qu, H.Q. In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA. Polym. Degrad. Stab. 2021, 183, 109417. [Google Scholar] [CrossRef]
- Xu, S.L.; Zhang, L.X.; Lin, Y.J.; Li, R.S.; Zhang, F.Z. Layered double hydroxides used as flame retardant for engineering plastic acrylonitrile-butadiene-styrene (ABS). J. Phys. Chem. Solids 2012, 73, 1514–1517. [Google Scholar] [CrossRef]
- Yue, X.P.; Li, C.F.; Ni, Y.H.; Xu, Y.J.; Wang, J. Flame retardant nanocomposites based on 2D layered nanomaterials: A review. J. Mater. Sci. 2019, 54, 13070–13105. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, S.Q.; Liu, L.; Hu, Y. Synthesis of heptamolybdate-intercalated MgAl LDHs and its application in polyurethane elastomer. Polym. Adv. Technol. 2016, 27, 250–257. [Google Scholar] [CrossRef]
- Xu, W.Z.; Zhang, B.L.; Wang, X.L.; Wang, G.S. The flame retardancy and smoke suppression effect of a hybrid containing dihydrogen phosphate anion modified reduced graphene oxide/layered double hydroxide on epoxy resin. RSC Adv. 2017, 7, 19662–19673. [Google Scholar] [CrossRef]
- Wang, X.; Kalali, E.N.; Wang, D.Y. Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustain. Chem. Eng. 2015, 3, 3281–3290. [Google Scholar] [CrossRef]
- Dittrich, B.; Wartig, K.A.; Mulhaupt, R.; Schartel, B. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polymers 2014, 6, 2875–2895. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T.; Hassan, A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J. Reinf. Plast. Compos. 2016, 35, 447–470. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.F.; Wu, J. Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. J. Polym. Res. 2018, 25, 48. [Google Scholar] [CrossRef]
- Zhu, W.C.; Zhang, Q.; Xiang, L.; Zhu, S.L. Green co-precipitation byproduct-assisted thermal conversion route to submicron Mg2B2O5 whiskers. Crystengcomm 2011, 13, 1654–1663. [Google Scholar] [CrossRef]
- Fan, G.C.; Zhou, H.F.; Chen, X.L. Optimized sintering temperature and enhanced microwave dielectric performance of Mg2B2O5 ceramic. J. Mater. Sci.-Mater. Electron. 2017, 28, 818–822. [Google Scholar] [CrossRef]
- Luo, J.H.; Han, S.H.; Wang, J.; Liu, H.; Zhu, X.D.; Chen, S.H. Effects of Boric Acid Ester Modified Magnesium Borate Whisker on the Mechanical Properties and Crystallization Kinetics of Polypropylene Composites. Materials 2020, 13, 1698. [Google Scholar] [CrossRef]
- Chen, S.H.; Jin, P.P.; Schumacher, G.; Wanderka, N. Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite. Compos. Sci. Technol. 2010, 70, 123–129. [Google Scholar] [CrossRef]
- Blanco, I.; Bottino, F.A.; Cicala, G.; Cozzo, G.; Latteri, A.; Recca, A. Synthesis and thermal characterization of new dumbbell shaped POSS/PS nanocomposites: Influence of the symmetrical structure of the nanoparticles on the dispersion/aggregation in the polymer matrix. Polym. Compos. 2015, 36, 1394–1400. [Google Scholar] [CrossRef]
- Wang, M.H.; Yu, T.; Feng, Z.Y.; Sun, J.; Gu, X.Y.; Li, H.F.; Fei, B.; Zhang, S. Preparation of 3-aminopropyltriethoxy silane modified cellulose microcrystalline and their applications as flame retardant and reinforcing agents in epoxy resin. Polym. Adv. Technol. 2020, 31, 1340–1348. [Google Scholar] [CrossRef]
- Zhu, D.H.; Nai, X.Y.; Zhu, C.C.; Guo, F.Q.; Bian, S.J.; Li, W. Synthesis of Mg2B2O5 whiskers via coprecipitation and sintering process. Int. J. Miner. Metall. Mater. 2012, 19, 969–972. [Google Scholar] [CrossRef]
- Zhu, D.H.; Yun, S.; Nai, X.Y.; Zhao, D.M.; Liu, X.; Li, W. Synthesis and characterization of strontium chloroborate whiskers. Cryst. Res. Technol. 2013, 48, 6–10. [Google Scholar] [CrossRef]
- Wang, J.L.; Ma, C.; Mu, X.W.; Zhou, X.; He, L.X.; Xiao, Y.L.; Song, L.; Hu, Y. Designing 3D ternary-structure based on SnO2 nanoparticles anchored hollow polypyrrole microspheres interconnected with N, S co-doped graphene towards high-performance polymer composite. Chem. Eng. J. 2020, 402, 126221. [Google Scholar] [CrossRef]
- Huo, S.Q.; Wang, J.; Yang, S.; Wang, J.P.; Zhang, B.; Zhang, B.; Chen, X.; Tang, Y.S. Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polym. Degrad. Stab. 2016, 131, 106–113. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, X.L.; Wu, X.J.; Li, W.; Cheng, C.M. Organic-Inorganic dual modified graphene: Improving the dispersibility of graphene in epoxy resin and the fire safety of epoxy resin. Polym. Degrad. Stab. 2019, 165, 80–91. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Yu, B.; Zheng, Y.Y.; Guo, J.; Chen, B.H.; Pan, Z.M.; Hu, Y. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym. Adv. Technol. 2018, 29, 1242–1254. [Google Scholar] [CrossRef]
- Qian, L.J.; Ye, L.J.; Qiu, Y.; Qu, S.R. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer 2011, 52, 5486–5493. [Google Scholar] [CrossRef]
- Zou, S.; Dang, L.; Li, Y.W.; Lan, S.J.; Zhu, D.H.; Li, L. Inorganic-organic dual modification of magnesium borate whisker by magnesium hydrate and dodecyl dihydrogen phosphate and its effect on the fire safety and mechanical properties of epoxy resin. Appl. Surf. Sci. 2022, 589, 153064. [Google Scholar] [CrossRef]
- Li, P.; Dang, L.; Li, Y.W.; Lan, S.J.; Zhu, D.H. Enhanced flame-retardant and mechanical properties of epoxy resin by combination with layered double hydroxide, Mg2B2O5 whisker, and dodecyl dihydrogen phosphate. Mater. Des. 2022, 217, 110608. [Google Scholar] [CrossRef]
- Chu, F.K.; Xu, Z.M.; Zhou, Y.F.; Zhang, S.H.; Mu, X.W.; Wang, J.L.; Hu, W.Z.; Song, L. Hierarchical core-shell TiO2@LDH@Ni(OH)2 architecture with regularly-oriented nanocatalyst shells: Towards improving the mechanical performance, flame retardancy and toxic smoke suppression of unsaturated polyester resin. Chem. Eng. J. 2021, 405, 126650. [Google Scholar] [CrossRef]
- Zou, S.; Lan, S.J.; Dang, L.; Li, P.; Zhu, D.H.; Li, L. Controllable fabrication of a hybrid containing dodecyl dihydrogen phosphate modified magnesium borate whisker/hydrated alumina for enhancing the fire safety and mechanical properties of epoxy resin. RSC Adv. 2022, 12, 7422–7432. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, X.L.; Wu, Y.; Li, W.; Chen, C.Y. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef]
The Qualitative Characteristics | Value |
---|---|
Properties of DGEBA | |
Density at 25 °C, g/cm3 | 1.18 |
Viscosity at 25 °C, Pa s | 20–40 |
softening point, °C | 14–23 |
Epoxy equivalent, (g mol−1) | 210–230 |
epoxy value, mol 100g−1 | 0.41–0.48 |
Properties of DDM | |
Molecular mass, g mol−1 | 198.28 |
Density at 25 °C, g/cm3 | 1.15 |
Viscosity at 25 °C, Pa s | 2.5–4 |
melting point/freezing point, °C | 91.5–92 |
Amine value (mg KOH g−1) | 480 |
Sample | DGEBA (wt%) | DDM (wt%) | MBR (wt%) | MBR@LDHP (wt%) | MBR@LDHP-APES (wt%) |
---|---|---|---|---|---|
EP | 82.0 | 18.0 | 0 | 0 | 0 |
EP/2.5 MBR@LDHP-APES | 80.0 | 17.5 | 0 | 0 | 2.5 |
EP/5.0 MBR@LDHP-APES | 78.0 | 17.0 | 0 | 0 | 5.0 |
EP/7.5 MBR@LDHP-APES | 75.8 | 16.7 | 0 | 0 | 7.5 |
EP/7.5 MBR@LDHP | 75.8 | 16.7 | 0 | 7.5 | 0 |
EP/7.5 MBR | 75.8 | 16.7 | 7.5 | 0 | 0 |
Sample | T−5% (°C) | Tmax (°C) | Char Yield (%) |
---|---|---|---|
EP | 363.7 | 387.4 | 15.49 |
EP/7.5MBR@LDHP-APES | 363.6 | 386.7 | 21.41 |
EP/7.5MBR@LDHP | 359.1 | 383.9 | 22.10 |
EP/7.5MBR | 356.1 | 380.8 | 22.15 |
Sample | PHRR | THR | Mass | SPR | TSP |
---|---|---|---|---|---|
(KW·m−2) | (MJ·m−2) | (%) | (m2·s−1) | (m2) | |
EP | 1020.2 | 107.6 | 10.3 | 0.57 | 60.1 |
EP/2.5 MBR@LDHP-APES | 962.6 | 73.4 | 15.9 | 0.38 | 42.6 |
EP/5.0 MBR@LDHP-APES | 861.6 | 73.4 | 16.2 | 0.37 | 42.8 |
EP/7.5 MBR@LDHP-APES | 674.1 | 71.8 | 18.9 | 0.27 | 40.3 |
EP/7.5MBR@LDHP | 752.2 | 75.8 | 18.2 | 0.34 | 46.3 |
EP/7.5MBR | 772.5 | 90.2 | 17.8 | 0.42 | 55.5 |
Composite (Content wt%) | Flame Retardancy | Mechanical Properties | Ref. | |||
---|---|---|---|---|---|---|
PHRR | PSPR | LOI | Tensile Strength | Flexural Strength | ||
EP/APP (11.0) | −42.8% | No given | 17.9% | −43.5% | No given | [45] |
EP/MH (7.5) | −16.3% | −30.6% | 14.6% | −23.3% | No given | [53] |
EP/LDH (2.0) | −21.3% | −12.9% | 14.2% | −3.7% | −9.7% | [9] |
EP/LDH (7.5) | −16.1% | −30.6% | 16.7% | −20.2% | No given | [54] |
EP/MBR@LDHP-APES (7.5) | −33.9% | −52.6% | 36.7% | 18.8% | 21.5% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S.; Dang, L.; Li, P.; Zhu, J.; Lan, S.; Zhu, D. Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin. Polymers 2022, 14, 3661. https://doi.org/10.3390/polym14173661
Zou S, Dang L, Li P, Zhu J, Lan S, Zhu D. Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin. Polymers. 2022; 14(17):3661. https://doi.org/10.3390/polym14173661
Chicago/Turabian StyleZou, Sai, Li Dang, Ping Li, Jiachen Zhu, Shengjie Lan, and Donghai Zhu. 2022. "Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin" Polymers 14, no. 17: 3661. https://doi.org/10.3390/polym14173661
APA StyleZou, S., Dang, L., Li, P., Zhu, J., Lan, S., & Zhu, D. (2022). Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin. Polymers, 14(17), 3661. https://doi.org/10.3390/polym14173661