Human Enamel Fluorination Enhancement by Photodynamic Laser Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Fluorination Protocol
2.2. Scanning Electron Microscopy Investigation
2.3. Atomic Force Microscopy Investigation
2.4. Statistical Analysis
2.5. FTIR-ATR Investigation
3. Results
3.1. Scanning Electron Microscopy
3.2. Atomic Force Microscopy
3.3. Statistical Analysis Results
3.4. FTIR-ATR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.S.; Rothen, M.L.; Milgrom, P. Pharmacokinetics of iodine and fluoride following application of an anticaries varnish in adults. JDR Clin. Trans. Res. 2018, 3, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Qeli, E.; Toti, C.; Odorici, A.; Blasi, E.; Tragaj, E.; Tepedino, M.; Masedu, F.; Kacani, G.; Hysi, D.; Meto, A.; et al. Effectiveness of two different fluoride-based agents in the treatment of dentin hypersensitivity: A prospective clinical trial. Materials 2022, 15, 1266. [Google Scholar] [CrossRef] [PubMed]
- Meto, A.; Meto, A.; Targaj, E.; Lipo, M.; Bauermann, C. The use of tiefenfluorid for desensitization of dentinal hyperesthesia. Balk J. Dent. Med. 2014, 18, 85–88. [Google Scholar]
- Coordes, S.L.; Jost-Brinkmann, P.G.; Präger, T.M. A comparison of different sealants preventing demineralization around brackets. J. Orofac. Orthop. 2018, 79, 49–56. [Google Scholar] [CrossRef]
- Kozaczuk, S. Deep penetration fluoridation for caries prevention and treatment: The use of Tiefenfluorid junior in children. Case reports. Nowa Stomatol. 2020, 1, 15–25. [Google Scholar] [CrossRef]
- Cabral Oliveira, M.R.; Cabral Oliveira, P.H.; Cabral Oliveira, L.H.; Sfalcin, R.A.; Prates, R.A.; Navarro, R.S.; Cesar, P.F.; Deana, A.M.; Chavantes, M.C.; Bussadori, S.K.; et al. Influence of ultrapulsed CO2 laser, before application of different types of fluoride, on the increase of microhardness of enamel in vitro. Biomed. Res. Int. 2018, 2018, 5852948. [Google Scholar]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Combined effects of a topical fluoride treatment and 445 nm laser irradiation of enamel against a demineralization challenge: A light and electron microscopic ex vivo study. PLoS ONE 2020, 15, e0237195. [Google Scholar] [CrossRef]
- Pagano, S.; Lombardo, G.; Orso, M.; Abraha, I.; Capobianco, B.; Cianetti, S. Lasers to prevent dental caries: A systematic review. BMJ Open 2020, 10, e038638. [Google Scholar] [CrossRef]
- Valizadeh, S.; Khub, M.R.; Chiniforush, N.; Kharazifard, M.J.; Hashemikamangar, S.S. Effect of laser irradiance and fluoride varnish on demineralization around dental composite restorations. J. Lasers Med. Sci. 2020, 11, 450–455. [Google Scholar] [CrossRef]
- Hazrah, K.S.; Antao, S.M. Apatite, Ca10(PO4)6(OH,F,Cl)2: Structural variations, natural solid solutions, intergrowths, and zoning. Minerals 2022, 12, 527. [Google Scholar] [CrossRef]
- Dawasaz, A.A.; Togoo, R.A.; Mahmood, Z.; Azlina, A.; Thirumulu Ponnuraj, K. Effectiveness of self-assembling peptide (P11-4) in dental hard tissue conditions: A comprehensive review. Polymers 2022, 14, 792. [Google Scholar] [CrossRef]
- Teng, N.-C.; Pandey, A.; Hsu, W.-H.; Huang, C.-S.; Lee, W.-F.; Lee, T.-H.; Yang, T.C.-K.; Yang, T.-S.; Yang, J.-C. Rehardening and the protective effect of gamma-polyglutamic acid/nano-hydroxyapatite paste on surface-etched enamel. Polymers 2021, 13, 4268. [Google Scholar] [CrossRef]
- Fekrazad, R.; Najafi, A.; Mahfar, R.; Namdari, M.; Azarsina, M. Comparison of enamel remineralization potential after application of titanium tetra fluoride and carbon dioxide laser. JMLL 2017, 26, 113–119. [Google Scholar] [CrossRef]
- Zancope, B.R.; Rodrigues, L.P.; Parisotto, T.M.; Steiner-Oliveira, C.; Rodrigues, L.K.A.; Nobre-dos-Santos, M. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study. Lasers Med. Sci. 2016, 31, 539–547. [Google Scholar] [CrossRef]
- Kaur, T.; Tripathi, T.; Rai, P.; Kanase, A. SEM evaluation of enamel surface changes and enamel microhardness around orthodontic brackets after application of CO2 Laser, Er,Cr:YSGG Laser and fluoride varnish: An in vivo study. J. Clin. Diagn. Res. 2017, 11, ZC59–ZC63. [Google Scholar] [CrossRef]
- Agrawal, N.; Shashikiran, N.D.; Singla, S.; Ravi, K.S.; Kulkarni, V.K. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study. Contemp. Clin. Dent. 2014, 5, 75–80. [Google Scholar] [CrossRef]
- Lei, L.; Zheng, L.; Xiao, H.; Zheng, J.; Zhou, Z. Wear mechanism of human tooth enamel: The role of interfacial protein bonding between HA crystals. J. Mech. Behav. Biomed. Mater. 2020, 110, 103845. [Google Scholar] [CrossRef]
- Tokunaga, J.; Ikeda, H.; Nagamatsu, Y.; Awano, S.; Shimizu, H. Wear of Polymer-Infiltrated Ceramic Network Materials against Enamel. Materials 2022, 15, 2435. [Google Scholar] [CrossRef]
- Lombardini, M.; Ceci, M.; Colombo, M.; Bianchi, S.; Poggio, C. Preventive effect of different toothpastes on enamel erosion: AFM and SEM studies. Scanning 2014, 36, 401–410. [Google Scholar] [CrossRef]
- Meredith, L.; Farella, M.; Lowrey, S.; Cannon, R.D.; Mei, L. Atomic force microscopy analysis of enamel nanotopography after interproximal reduction. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 750–757. [Google Scholar] [CrossRef]
- Torres-Gallegos, I.; Zavala-Alonso, V.; Patino-Marin, N.; Martinez-Castanon, G.A.; Anusavice, K.; Loyola-Rodriguez, J.P. Enamel roughness and depth profile after phosphoric acidetching of healthy and fluorotic enamel. Aust. Dent. J. 2012, 57, 1–6. [Google Scholar] [CrossRef]
- Panpan, L.; Chungik, O.; Hongjun, K.; Chen-Glasser, M.; Park, G.; Jetybayeva, A.; Yeom, J.; Kim, H.; Ryu, J.; Hong, S. Nanoscale effects of beverages on enamel surface of human teeth: An atomic force microscopy study. J. Mech. Behav. Biomed. Mater. 2020, 110, 103930. [Google Scholar]
- Ga, Y.; Okamoto, Y.; Matsuya, S. The effects of treated time of acidulated phosphate fluoridesolutions on enamel erosion. Pediatric Dent. J. 2012, 22, 1–7. [Google Scholar] [CrossRef]
- Hannig, C.; Hamkens, A.; Becker, K.; Attin, R.; Attin, T. Erosive effects of different acids on bovine enamel: Release of calcium and phosphate in vitro. Arch. Oral Biol. 2005, 50, 541–552. [Google Scholar] [CrossRef]
- Wang, L.; Tang, R.; Bonstein, T.; Orme, C.A.; Bush, P.J.; Nancollas, G.H. A new model for nanoscale enamel dissolution. J. Phys. Chem. B 2005, 109, 999–1005. [Google Scholar] [CrossRef]
- Cerci, B.B.; Roman, L.S.; Guariza-Filho, O.; Camargo, E.S.; Tanaka, O.M. Dental enamel roughness with different acid etching times: Atomic force microscopy study. Eur. J. Gen. Dent. 2012, 1, 187–191. [Google Scholar] [CrossRef]
- Reis Derceli, J.; Faraoni, J.J.; Pereira-da-Silva, M.A.; Palma-Dibb, R.G. Analysis of the early stages and evolution of dental enamel erosion. Braz. Dent. J. 2016, 27, 313–317. [Google Scholar] [CrossRef]
- Dascalu, L.M.; Moldovan, M.; Sarosi, C.; Sava, S.; Dreanca, A.; Repciuc, C.; Purdoiu, R.; Nagy, A.; Badea, M.E.; Paun, A.G.; et al. Photodynamic therapy with natural photosensitizers in the management of periodontal disease induced in rats. Gels 2022, 8, 134. [Google Scholar] [CrossRef]
- Rosso, M.P.O.; Oyadomari, A.T.; Pomini, K.T.; Della Coletta, B.B.; Shindo, J.V.T.C.; Ferreira Júnior, R.S.; Barraviera, B.; Cassaro, C.V.; Buchaim, D.V.; Teixeira, D.B.; et al. Photobiomodulation therapy associated with heterologous fibrin biopolymer and bovine bone matrix helps to reconstruct long bones. Biomolecules 2020, 10, 383. [Google Scholar] [CrossRef]
- Reis, C.H.B.; Buchaim, R.L.; Pomini, K.T.; Hamzé, A.L.; Zattiti, I.V.; Duarte, M.A.H.; Alcalde, M.P.; Barraviera, B.; Ferreira Júnior, R.S.; Pontes, F.M.L.; et al. Effects of a biocomplex formed by two scaffold biomaterials, hydroxyapatite/tricalcium phosphate ceramic and fibrin biopolymer, with photobiomodulation, on bone repair. Polymers 2022, 14, 2075. [Google Scholar] [CrossRef]
- Carvalho Almança Lopes, C.; Oliveira Limirio, P.H.J.; Novais, R.S.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev. 2018, 53, 747–769. [Google Scholar] [CrossRef]
- Martinez, M.G.; Bullock, A.J.; MacNeil, S.; Rehman, I.U. Characterisation of structural changes in collagen with Raman spectroscopy. Appl. Spectrosc. Rev. 2019, 54, 509–542. [Google Scholar] [CrossRef]
- Khalid, M.; Bora, T.; Ghaithi, A.A.; Thukral, S.; Dutta, J. Raman Spectroscopy detects changes in bone mineral quality and collagen cross-linkage in staphylococcus infected human bone. Sci. Rep. 2018, 8, 9417. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chao, Y.; Wan, Q.; Zhu, Z.; Yu, H. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater. 2009, 5, 1798–1807. [Google Scholar] [CrossRef]
- Szwajca, A.; Juszczyńska, S.; Jarzębski, M.; Baryła-Pankiewicz, E. Incorporation of fluorescent fluorinated methacrylate nano-sized particles into chitosan matrix formed as a membranes or beads. Polymers 2022, 14, 2750. [Google Scholar] [CrossRef]
- Lee, E.-S.; Chun, K.-W.; Jin, J.; Oh, M.-C. Frequency response of thermo-optic phase modulators based on fluorinated polyimide polymer waveguide. Polymers 2022, 14, 2186. [Google Scholar] [CrossRef]
- Zhang, Y.; Vespignani, L.; Balzano, M.G.; Bellandi, L.; Camaiti, M.; Lubin-Germain, N.; Salvini, A. Low fluorinated oligoamides for use as wood protective coating. Coatings 2022, 12, 927. [Google Scholar] [CrossRef]
- Yamada, M.K.; Uo, M.; Ohkawa, S.; Akasaka, T.; Watari, F.J. Three-dimensional topographic scanning electron microscope and Raman spectroscopic analyses of the irradiation effect on teeth by Nd:YAG, Er: YAG, and CO2 lasers. Biomed. Mater. Res. B 2004, 71, 7. [Google Scholar] [CrossRef]
- Steiner-Oliveira, C.; Rodrigues, L.K.; Soares, L.E.; Martin, A.A.; Zezell, D.M.; Nobre-dos-Santos, M. Chemical, morphological and thermal effects of 10.6-μm CO2 laser on the inhibition of enamel demineralization. Dent. Mater. J. 2006, 25, 455. [Google Scholar] [CrossRef][Green Version]
- Shahabi, A.S.; Walsh, L.J. Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim. Acta A 1999, 55A, 1303. [Google Scholar]
- Soares, L.E.; Brugnera Junior, A.; Zanin, F.A.; Pacheco, M.T.; Martin, A.A. Effects of treatment for manipulation of teeth and Er:YAG laser irradiation on dentin a Raman spectroscopy analysis. Photomed. Laser Surg. 2007, 25, 50. [Google Scholar] [CrossRef]
- Chuang, S.-F.; Liao, C.-C.; Lin, J.-C.; Chou, Y.-C.; Lee, T.-L.; Lai, T.-W. Novel polymerization of dental composites using near-infrared-induced internal upconversion blue luminescence. Polymers 2021, 13, 4304. [Google Scholar] [CrossRef]
- Daher, R.; Krejci, I.; Mekki, M.; Marin, C.; Di Bella, E.; Ardu, S. Effect of multiple enamel surface treatments on micro-shear bond strength. Polymers 2021, 13, 3589. [Google Scholar] [CrossRef]
- Hanžek, J.; Dubček, P.; Fazinić, S.; Tomić Luketić, K.; Karlušić, M. High-energy heavy ion irradiation of Al2O3, MgO and CaF2. Materials 2022, 15, 2110. [Google Scholar] [CrossRef]
- Kravanja, K.A.; Finšgar, M. Analytical techniques for the characterization of bioactive coatings for orthopaedic implants. Biomedicines 2021, 9, 1936. [Google Scholar] [CrossRef]
- Voina, C.; Delean, A.; Muresan, A.; Valeanu, M.; Mazilu Moldovan, A.; Popescu, V.; Petean, I.; Ene, R.; Moldovan, M.; Pandrea, S. Antimicrobial activity and the effect of green tea experimental gels on teeth surfaces. Coatings 2020, 10, 537. [Google Scholar] [CrossRef]
- Pastrav, M.; Chisnoiu, A.M.; Pastrav, O.; Sarosi, C.; Pordan, D.; Petean, I.; Muntean, A.; Moldovan, M.; Chisnoiu, R.M. Surface characteristics, fluoride release and bond strength evaluation of four orthodontic adhesives. Materials 2021, 14, 3578. [Google Scholar] [CrossRef]
- Clift, F. Artificial methods for the remineralization of hydroxyapatite in enamel. Mater. Today Chem. 2021, 21, 100498. [Google Scholar] [CrossRef]
- Ren, C.; Yu, Z.; Phillips, B.L.; Wang, H.; Ji, J.; Pan, B.; Li, W. Molecular-scale investigation of fluoride sorption mechanism by nanosized hydroxyapatite using 19F solid-state NMR spectroscopy. J. Colloid Interface Sci. 2019, 557, 357–366. [Google Scholar] [CrossRef]
- Salma, S.N.; Darwish, H.; Abo-Mosallam, H.A. HA forming ability of some glass-ceramics of the CaMgSi2O6–Ca5(PO4)3F–CaAl2SiO6 system. Ceram. Int. 2006, 32, 357–364. [Google Scholar] [CrossRef]
- Hossein, E.; Moztarzadeh, F.; Tahriri, M. Synthesis, characterization and thermal properties of Ca5(PO4)3(OH)1−xFx (0≤x≤1) nanopowders via pH cycling method. Mater. Res. Innov. 2011, 15, 190–195. [Google Scholar]






| Compounds of the First Solution | Compounds of the Second Solution |
|---|---|
| Copper hexafluorosilicate (CuF6Si) | Dispersed calcium hydroxide (Ca(OH)2) |
| Magnesium hexafluorosilicate (F18Mg16Na10O66Si27) | |
| Sodium fluoride (NaF) | Methylcellulose |
| Distilled water | Distilled water |
| Ra | Rq | |||||
|---|---|---|---|---|---|---|
| B | (95% CI) | p | B | (95% CI) | p | |
| (Intercept) | 2.27 | 2.19 | <0.001 | 2.38 | 2.30 | <0.001 |
| Lot (F vs. C) | −0.02 | (−0.1–0.05) | 0.562 | −0.05 | (−0.14–0.04) | 0.262 |
| Lot (I vs. C) | −0.15 | (−0.23–−0.08) | <0.001 | −0.19 | (−0.29–−0.1) | <0.001 |
| Set (nano vs. micro) | −0.76 | (−0.83–−0.69) | <0.001 | −0.74 | (−0.82–−0.67) | <0.001 |
| Fluoride (yes vs. no) | −0.23 | (−0.32–−0.14) | <0.001 | −0.2 | (−0.3–−0.1) | <0.001 |
| LASER (yes vs. no) | −0.1 | (−0.19–−0.01) | 0.036 | −0.12 | (−0.22–−0.02) | 0.024 |
| Ra | Rq | |||||||
|---|---|---|---|---|---|---|---|---|
| B | (95% CI) | p | R2 | B | (95% CI) | p | R2 | |
| Lot (F vs. C) | −0.02 | (−0.3–0.25) | 0.87 | 0.025 | −0.05 | (−0.32–0.22) | 0.705 | 0.038 |
| Lot (I vs. C) | −0.15 | (−0.45–0.14) | 0.314 | 0.025 | −0.19 | (−0.49–0.1) | 0.194 | 0.038 |
| Set (nano vs. micro) | −0.76 | (−0.86–−0.65) | <0.001 | 0.793 | −0.74 | (−0.85–−0.63) | <0.001 | 0.771 |
| Fluoride (yes vs. no) | −0.28 | (−0.5–−0.06) | 0.016 | 0.095 | −0.26 | (−0.48–−0.04) | 0.024 | 0.083 |
| LASER (yes vs. no) | −0.21 | (−0.46–0.04) | 0.102 | 0.055 | −0.22 | (−0.47–0.03) | 0.091 | 0.06 |
| B | (95% CI) | p | |
|---|---|---|---|
| (Intercept) | 1.82 | 1.72 | <0.001 |
| Lot (F vs. C) | 0.1 | (0.02–0.19) | 0.03 |
| Lot (I vs. C) | −0.01 | (−0.1–0.07) | 0.735 |
| Fluoride (yes vs. no) | −0.16 | (−0.25–−0.06) | 0.004 |
| LASER (yes vs. no) | −0.04 | (−0.11–0.03) | 0.259 |
| B | (95% CI) | p | R2 | |
|---|---|---|---|---|
| Lot (F vs. C) | 0.1 | (−0.02–0.23) | 0.124 | 0.165 |
| Lot (I vs. C) | −0.01 | (−0.12–0.09) | 0.781 | 0.165 |
| Fluoride (yes vs. no) | −0.18 | (−0.28–−0.08) | 0.002 | 0.407 |
| LASER (yes vs. no) | −0.12 | (−0.2–−0.04) | 0.006 | 0.188 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tisler, C.E.; Moldovan, M.; Petean, I.; Buduru, S.D.; Prodan, D.; Sarosi, C.; Leucuţa, D.-C.; Chifor, R.; Badea, M.E.; Ene, R. Human Enamel Fluorination Enhancement by Photodynamic Laser Treatment. Polymers 2022, 14, 2969. https://doi.org/10.3390/polym14142969
Tisler CE, Moldovan M, Petean I, Buduru SD, Prodan D, Sarosi C, Leucuţa D-C, Chifor R, Badea ME, Ene R. Human Enamel Fluorination Enhancement by Photodynamic Laser Treatment. Polymers. 2022; 14(14):2969. https://doi.org/10.3390/polym14142969
Chicago/Turabian StyleTisler, Corina Elena, Marioara Moldovan, Ioan Petean, Smaranda Dana Buduru, Doina Prodan, Codruta Sarosi, Daniel-Corneliu Leucuţa, Radu Chifor, Mîndra Eugenia Badea, and Razvan Ene. 2022. "Human Enamel Fluorination Enhancement by Photodynamic Laser Treatment" Polymers 14, no. 14: 2969. https://doi.org/10.3390/polym14142969
APA StyleTisler, C. E., Moldovan, M., Petean, I., Buduru, S. D., Prodan, D., Sarosi, C., Leucuţa, D.-C., Chifor, R., Badea, M. E., & Ene, R. (2022). Human Enamel Fluorination Enhancement by Photodynamic Laser Treatment. Polymers, 14(14), 2969. https://doi.org/10.3390/polym14142969

