Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion
Abstract
:1. Introduction
2. Material, Experimental Procedure and Constitutive Model
2.1. Materials and Manufacturing Process
2.2. Experimental Tests
2.3. Constitutive Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Additive manufacturing; |
DIC | Digital Image Correlation; |
FFF | Fused Filament Fabrication; |
MEX | Material Extrusionl |
PEBA | Polyether-Block-Amide; |
QLVE | Quasi-Linear Visco-Elastic; |
TPE | Thermoplastic Elastomer. |
Appendix A. A Predictive Formula for the USF
References
- Pratama, J.; Cahyono, S.I.; Suyitno, S.; Muflikhun, M.A.; Salim, U.A.; Mahardika, M.; Arifvianto, B. A Review on Reinforcement Methods for Polymeric Materials Processed Using Fused Filament Fabrication (FFF). Polymers 2021, 13, 4022. [Google Scholar] [CrossRef] [PubMed]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Barši Palmić, T.; Slavič, J.; Boltežar, M. Process parameters for FFF 3D-printed conductors for applications in sensors. Sensors 2020, 20, 4542. [Google Scholar] [CrossRef] [PubMed]
- Basgul, C.; Spece, H.; Sharma, N.; Thieringer, F.M.; Kurtz, S.M. Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1924–1941. [Google Scholar] [CrossRef]
- Roels, E.; Terryn, S.; Iida, F.; Bosman, A.W.; Norvez, S.; Clemens, F.; Van Assche, G.; Vanderborght, B.; Brancart, J. Processing of Self-Healing Polymers for Soft Robotics. Adv. Mater. 2022, 34, e2104798. [Google Scholar] [CrossRef]
- Tayeb, A.; Cam, J.B.L.; Loez, B. 3D printing of soft thermoplastic elastomers: Effect of the deposit angle on mechanical and thermo-mechanical properties. Mech. Mater. 2022, 165, 104155. [Google Scholar] [CrossRef]
- Koutsamanis, I.; Paudel, A.; Alva Zúñiga, C.P.; Wiltschko, L.; Spoerk, M. Novel polyester-based thermoplastic elastomers for 3D-printed long-acting drug delivery applications. J. Control. Release 2021, 10, 290–305. [Google Scholar] [CrossRef]
- Abang Ismawi Hassim, D.H.; Nik Ismail, N.I.; Sarkawi, S.S. The feasibility of using ethylene-vinyl acetate/natural rubber (EVA/NR)-based thermoplastic elastomer as filament material in fused deposition modelling (FDM)-3D printing application. J. Rubber Res. 2021, 24, 659–668. [Google Scholar] [CrossRef]
- Lin, X.; Coates, P.; Hebda, M. Experimental analysis of the tensile property of FFF-printed elastomers. Polym. Test. 2020, 90, 106687. [Google Scholar] [CrossRef]
- Bachtiar, E.O.; Erol, O.; Millrod, M.; Tao, R.; Gracias, D.H.; Romer, L.H.; Kang, S.H. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J. Mech. Behav. Biomed. Mater. 2021, 104, 103649. [Google Scholar] [CrossRef]
- Dinzart, F.; Molinari, A.; Herbach, R. Thermomechanical response of a viscoelastic beam under cyclic bending; self-heating and thermal failure. Arch. Mech. 2008, 60, 59–85. [Google Scholar]
- Barzegari, M.R.; Hossieny, N.; Jahani, D.; Park, C.B. Characterization of Hard-Segment Crystalline Phase of Poly(Ether-Block-Amide) (PEBAX VR) Thermoplastic Elastomers in the Presence of Supercritical CO2 and Its Impact on Foams. Polymer 2017, 114, 15–27. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, G.; Jiang, W. Mechanical properties of biodegradablepolyactide/poly (ether-block-amide)/thermoplastic stach blends: Effect of the crosslinking of starch. J. Appl. Polym. Sci. 2016, 133, 42297. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, J.; Park, C.B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2022, 62, 95–141. [Google Scholar] [CrossRef]
- Adrover-Monserrat, B.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Study of the Influence of the Manufacturing Parameters on Tensile Properties of Thermoplastic Elastomers. Polymers 2022, 14, 576. [Google Scholar] [CrossRef]
- Tobajas, R.; Elduque, D.; Ibarz, E.; Javierre, C.; Canteli, A.F.; Gracia, L. Visco-hyperelastic model with damage for simulating cyclic thermoplastic elastomers behavior applied to an industrial component. Polymers 2018, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Baeurle, S.A.; Hotta, A.; Gusev, A.A. A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers. Polymer 2005, 46, 4344–4354. [Google Scholar] [CrossRef]
- Drozdov, A.D.; Christiansen, J.C. Constitutive equations for the nonlinear viscoelastic and viscoplastic behavior of thermoplastic elastomers. Int. J. Eng. Sci. 2006, 3–4, 205–226. [Google Scholar] [CrossRef]
- Parenteau, T.; Bertevas, E.; Abusuas, G.; Stocker, R.; Greens, Y.; Pilvin, P. Characterisation and micromechanical modelling of the elasto-viscoplastic behavior of thermoplastic elastomers. Mech. Mater. 2014, 71, 114–125. [Google Scholar] [CrossRef]
- Adams, R.; Soe, S.P.; Santiago, R.; Robinson, M.; Hanna, B.; McShane, G.; Alves, M.; Burek, R.; Theobald, P. A novel pathway for efficient characterisation of additively manufactured thermoplastic elastomers. Mater. Des. 2019, 180, 107917. [Google Scholar] [CrossRef]
- Gumus, O.Y.; Ilhan, R.; Canli, B.E. Effect of Printing Temperature on Mechanical and Viscoelastic Properties of Ultra-flexible Thermoplastic Polyurethane in Material Extrusion Additive Manufacturing. J. Mater. Eng. Perform. 2022, 31, 3679–3687. [Google Scholar] [CrossRef]
- Maeda, S.; Okushita, H. Structure and viscoelastic properties of poly (Ether-Block-Amide) thermoplastic elastomers with No ester linkages. Nihon Reoroji Gakkaishi 2019, 47, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.M.; Charalambides, M.N.; Williams, J.G. Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mater. 2004, 8, 255–268. [Google Scholar] [CrossRef]
- Narooei, K.; Arman, M. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials. J. Mech. Behav. Biomed. Mater. 2018, 79, 104–113. [Google Scholar] [CrossRef]
- García-Vilana, S.; Sánchez-Molina, D.; Llumà, J.; Galtés, I.; Velázquez-Ameijide, J.; Rebollo-Soria, M.C.; Arregui-Dalmases, C. Viscoelastic Characterization of Parasagittal Bridging Veins and Implications for Traumatic Brain Injury: A Pilot Study. Bioengineering 2021, 8, 145. [Google Scholar] [CrossRef]
- Zandi, M.D.; Jerez-Mesa, R.; Lluma-Fuentes, J.; Jorba-Peiro, J.; Travieso-Rodriguez, J.A. Study of the manufacturing process effects of fused filament fabrication and injection molding on tensile properties of composite PLA-wood parts. Int. J. Adv. Manuf. Technol. 2020, 108, 1725–1735. [Google Scholar] [CrossRef]
- Sánchez-Molina, D.; García-Vilana, S.; Llumà, J.; Galtés, I.; Velázquez-Ameijide, J.; Rebollo-Soria, M.C.; Arregui-Dalmases, C. Mechanical Behavior of Blood Vessels: Elastic and Viscoelastic Contributions. Biology 2021, 10, 831. [Google Scholar] [CrossRef]
- Davis, F.M.; De Vita, R. A nonlinear constitutive model for stress relaxation in ligaments and tendons. Ann. Biomed. Eng. 2012, 40, 2541–2550. [Google Scholar] [CrossRef]
- Fung, Y.C. Biomechanics Mechanical Properties of Living Tissues; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Jin, Z.H. Some notes on the linear viscoelasticity of functionally graded materials. Math. Mech. Solids 2006, 11, 216–224. [Google Scholar] [CrossRef]
- Soussou, J.E.; Moavenzadeh, F.; Gradowczyk, M.H. Application of Prony series to linear viscoelasticity. Trans. Soc. Rheol. 1970, 14, 573–584. [Google Scholar] [CrossRef]
- Tzikang, C. Determining a Prony Series for a Viscoelastic Material from Time Varying Strain Data; NASA Center for Aero Space Information (CASI): Arlington, VA, USA, 2000.
- Tapia-Romero, M.A.; Dehonor-Gómez, M.; Lugo-Uribe, L.E. Prony series calculation for viscoelastic behavior modeling of structural adhesives from DMA data. Ing. Investig. Tecnol. 2020, 21, 1–10. [Google Scholar] [CrossRef]
- Beylkin, G.; Monzón, L. On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 2005, 19, 17–48. [Google Scholar] [CrossRef] [Green Version]
- Macosko, C.W. Rheology Principles. Measurements and Applications; VCH: Weinheim, Germany, 1994; ISBN 978-0471185758. [Google Scholar]
- Funk, J.R.; Hall, G.W.; Crandall, J.R.; Pilkey, W.D. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 2000, 122, 15–22. [Google Scholar] [CrossRef]
- Chen, W.M.; Yang, M.C.; Hong, S.G.; Hsieh, Y.S. Effect of soft segment content of Pebax® Rnew on the properties of Nylon-6/SMA/PEBA blends. J. Polym. Res. 2019, 26, 25. [Google Scholar] [CrossRef]
- Gutierrez-Lemini, D. Isothermal Boundary-Value Problems. In Engineering Viscoelasticity; Springer: Boston, MA, USA, 2014; pp. 219–238. [Google Scholar]
- Serra-Aguila, A.; Puigoriol-Forcada, J.M.; Reyes, G.; Menacho, J. Estimation of Tensile Modulus of a Thermoplastic Material from Dynamic Mechanical Analysis: Application to Polyamide 66. Polymers 2022, 14, 1210. [Google Scholar] [CrossRef]
- García-Vilana, S.; Sánchez-Molina, D.; Llumà, J.; Fernández-Osete, I.; Velázquez-Ameijide, J.; Martínez-González, E. A predictive model for fracture in human ribs based on Acoustic Emission Data. Med. Phys. 2022, 48, 5540–5548. [Google Scholar] [CrossRef]
- Velázquez-Ameijide, J.; García-Vilana, S.; Sánchez-Molina, D.; Martínez-González, E.; Llumà, J.; Rebollo-Soria, M.C.; Arregui-Dalmases, C. Influence of anthropometric variables on the mechanical properties of human rib cortical bone. Biomed. Phys. Eng. Express 2021, 7, 035013. [Google Scholar] [CrossRef]
T-Speed-no | ||||||
---|---|---|---|---|---|---|
225-1300-1 | 0.1014 | 0.0590 | 0.0751 | 203.39 | 15.27 | 0.903 |
225-1300-2 | 0.0987 | 0.0823 | 0.0919 | 194.91 | 11.60 | 0.832 |
225-1300-3 | 0.0996 | 0.0732 | 0.0792 | 201.74 | 12.05 | 0.808 |
225-2500-1 | 0.0997 | 0.0731 | 0.0791 | 198.15 | 11.81 | 0.795 |
225-2500-2 | 0.1031 | 0.0799 | 0.0854 | 198.34 | 13.25 | 0.932 |
225-2500-3 | 0.0961 | 0.0767 | 0.0826 | 200.73 | 10.97 | 0.783 |
245-1300-1 | 0.1025 | 0.0639 | 0.0712 | 191.10 | 11.70 | 0.783 |
245-1300-2 | 0.0957 | 0.0783 | 0.0840 | 196.87 | 12.51 | 0.847 |
245-1300-3 | 0.1049 | 0.0742 | 0.0797 | 193.15 | 10.58 | 0.733 |
245-2500-1 | 0.0948 | 0.0603 | 0.0634 | 198.66 | 10.20 | 0.693 |
245-2500-2 | 0.0975 | 0.0688 | 0.0731 | 202.99 | 11.08 | 0.777 |
245-2500-3 | 0.0950 | 0.0769 | 0.0801 | 194.09 | 12.13 | 0.819 |
T-Speed | ||||||
---|---|---|---|---|---|---|
225–1300 | 0.100 ± 0.001 | 0.072 ± 0.012 | 0.082 ± 0.009 | 200.0 ± 4.5 | 12.97 ± 2.00 | 0.848 ± 0.050 |
225–2500 | 0.100 ± 0.003 | 0.077 ± 0.003 | 0.082 ± 0.003 | 199.1 ± 1.4 | 12.01 ± 1.15 | 0.837 ± 0.082 |
245–1300 | 0.101 ± 0.005 | 0.072 ± 0.007 | 0.078 ± 0.006 | 193.7 ± 2.9 | 11.60 ± 0.97 | 0.788 ± 0.057 |
245–2500 | 0.096 ± 0.002 | 0.069 ± 0.008 | 0.072 ± 0.008 | 198.6 ± 4.5 | 11.14 ± 0.97 | 0.763 ± 0.064 |
average | 0.0991 ± 0.003 | 0.072 ± 0.008 | 0.079 ± 0.007 | 197.8 ± 3.9 | 11.93 ± 1.35 | 0.809 ± 0.066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adrover-Monserrat, B.; García-Vilana, S.; Sánchez-Molina, D.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion. Polymers 2022, 14, 2914. https://doi.org/10.3390/polym14142914
Adrover-Monserrat B, García-Vilana S, Sánchez-Molina D, Llumà J, Jerez-Mesa R, Travieso-Rodriguez JA. Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion. Polymers. 2022; 14(14):2914. https://doi.org/10.3390/polym14142914
Chicago/Turabian StyleAdrover-Monserrat, Bàrbara, Silvia García-Vilana, David Sánchez-Molina, Jordi Llumà, Ramón Jerez-Mesa, and J. Antonio Travieso-Rodriguez. 2022. "Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion" Polymers 14, no. 14: 2914. https://doi.org/10.3390/polym14142914
APA StyleAdrover-Monserrat, B., García-Vilana, S., Sánchez-Molina, D., Llumà, J., Jerez-Mesa, R., & Travieso-Rodriguez, J. A. (2022). Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion. Polymers, 14(14), 2914. https://doi.org/10.3390/polym14142914