Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Determination of β-D-Glucan Content
2.3. Statistical Evaluation
3. Results
3.1. Variability of β-D-Glucan in Varieties of Oat along Different Ontogenetic Phases
3.2. Comparison of Naked and Hulled Oat Varieties in the Accumulation of β-D-Glucan in Different Plant Tissues during Ontogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maughan, P.J.; Lee, R.; Walstead, R.; Vickerstaff, R.J.; Fogarty, M.C.; Brouwer, C.R.; Reid, R.R.; Jay, J.J.; Bekele, W.A.; Jackson, E.W.; et al. Genomic Insights from the First Chromosome-Scale Assemblies of Oat (Avena Spp.) Diploid Species. BMC Biol. 2019, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Finnan, J.; Burke, B.; Spink, J. The Effect of Nitrogen Timing and Rate on Radiation Interception, Grain Yield and Grain Quality in Autumn Sown Oats. Field Crops Res. 2019, 231, 130–140. [Google Scholar] [CrossRef]
- Brownlee, I.A. The Physiological Roles of Dietary Fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Chang, H.-C.; Huang, C.-N.; Yeh, D.-M.; Wang, S.-J.; Peng, C.-H.; Wang, C.-J. Oat Prevents Obesity and Abdominal Fat Distribution, and Improves Liver Function in Humans. Plant Foods Hum. Nutr. 2013, 68, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Harland, J. 2—Authorised EU Health Claims for Barley and Oat Beta-Glucans. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims; Sadler, M.J., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 25–45. [Google Scholar] [CrossRef]
- Regand, A.; Chowdhury, Z.; Tosh, S.M.; Wolever, T.M.S.; Wood, P. The Molecular Weight, Solubility and Viscosity of Oat Beta-Glucan Affect Human Glycemic Response by Modifying Starch Digestibility. Food Chem. 2011, 129, 297–304. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Hess, J.M.; Gould, T.J.; Slavin, J.L. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients 2017, 9, 1361. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Foley, M.H.; Gardill, B.R.; Dejean, G.; Schnizlein, M.; Bahr, C.M.E.; Louise Creagh, A.; van Petegem, F.; Koropatkin, N.M.; Brumer, H. Surface Glycan-Binding Proteins Are Essential for Cereal Beta-Glucan Utilization by the Human Gut Symbiont Bacteroides Ovatus. Cell. Mol. Life Sci. 2019, 76, 4319–4340. [Google Scholar] [CrossRef]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional Advantages of Oats and Opportunities for Its Processing as Value Added Foods—A Review. J. Food Sci. Technol. 2015, 52, 662–675. [Google Scholar] [CrossRef] [Green Version]
- Pathirannehelage, N.P.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G. Molecular Aspects of Cereal β-Glucan Functionality: Physical Properties, Technological Applications and Physiological Effects. J. Cereal Sci. 2007, 46, 101–118. [Google Scholar] [CrossRef]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, R.A.; Fincher, G.B. (1,3;1,4)-β-D-Glucans in Cell Walls of the Poaceae, Lower Plants, and Fungi: A Tale of Two Linkages. Mol. Plant 2009, 2, 873–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, D.M.D.L.; Abelilla, J.J.; Stein, H.H. Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: A Review. J. Anim. Sci. Biotechnol. 2019, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Saldivar, R.K.; Liang, P.-H.; Hsieh, Y.S.Y. Structures, Biosynthesis, and Physiological Functions of (1,3;1,4)-β-d-Glucans. Cells 2021, 10, 510. [Google Scholar] [CrossRef]
- Ermawar, R.A.; Collins, H.M.; Byrt, C.S.; Betts, N.S.; Henderson, M.; Shirley, N.J.; Schwerdt, J.; Lahnstein, J.; Fincher, G.B.; Burton, R.A. Distribution, Structure and Biosynthetic Gene Families of (1,3;1,4)-β-Glucan in Sorghum bicolor: (1,3;1,4)-β-Glucan in Sorghum bicolor. J. Integr. Plant Biol. 2015, 57, 429–445. [Google Scholar] [CrossRef]
- Fincher, G.B.; Stone, B.A. CEREALS|Chemistry of Nonstarch Polysaccharides. In Encyclopedia of Grain Science; Wrigley, C., Ed.; Elsevier: Oxford, UK, 2004; pp. 206–223. [Google Scholar] [CrossRef]
- Buckeridge, M.S.; Rayon, C.; Urbanowicz, B.; Tiné, M.A.S.; Carpita, N.C. Mixed Linkage (1→3),(1→4)-β-d-Glucans of Grasses. Cereal Chem. J. 2004, 81, 115–127. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Rzedzicki, Z.; Kasprzak, M.; Błaszczak, W. Distribution of (1-3)(1-4)-β-d-Glucans in Kernels of Selected Cultivars of Naked and Hulled Barley. J. Cereal Sci. 2012, 56, 496–503. [Google Scholar] [CrossRef]
- Trethewey, J.A.K.; Harris, P.J. Location of (1→3)- and (1→3),(1→4)-β-D-Glucans in Vegetative Cell Walls of Barley (Hordeum vulgare) Using Immunogold Labelling. New Phytol. 2002, 154, 347–358. [Google Scholar] [CrossRef]
- Vega-Sanchez, M.; Verhertbruggen, Y.; Scheller, H.V.; Ronald, P. Abundance of Mixed Linkage Glucan in Mature Tissues and Secondary Cell Walls of Grasses. Plant Signal. Behav. 2013, 8, e23143. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Zhang, Z.; Wang, F.; Li, Z.; Hu, Y. Effect of Nitrogen Forms and Levels on β-Glucan Accumulation in Grains of Oat (Avena sativa L.) Plants. J. Plant Nutr. Soil Sci. 2009, 172, 861–866. [Google Scholar] [CrossRef]
- Burton, R.A. Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-β-D-Glucans. Science 2006, 311, 1940–1942. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, C.; Freeman, J.; Jones, H.D.; Sparks, C.; Pellny, T.K.; Wilkinson, M.D.; Dunwell, J.; Andersson, A.A.M.; Mitchell, R.A.C.; Shewry, P.R. Down-Regulation of the CSLF6 Gene Results in Decreased (1,3;1,4)-beta-D-Glucan in Endosperm of Wheat. Plant Physiol. 2010, 152, 1209–1218. [Google Scholar] [CrossRef] [Green Version]
- Little, A.; Schwerdt, J.G.; Shirley, N.J.; Khor, S.F.; Neumann, K.; O’Donovan, L.A.; Lahnstein, J.; Collins, H.M.; Henderson, M.; Fincher, G.B.; et al. Revised Phylogeny of the Cellulose Synthase Gene Superfamily: Insights into Cell Wall Evolution. Plant Physiol. 2018, 177, 1124–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, R.A.; Collins, H.M.; Kibble, N.A.J.; Smith, J.A.; Shirley, N.J.; Jobling, S.A.; Henderson, M.; Singh, R.R.; Pettolino, F.; Wilson, S.M.; et al. Over-Expression of Specific HvCslF Cellulose Synthase-like Genes in Transgenic Barley Increases the Levels of Cell Wall (1,3;1,4)-β-d-Glucans and Alters Their Fine Structure: Over-Expression of CslF Genes in Barley. Plant Biotechnol. J. 2011, 9, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Taketa, S.; Yuo, T.; Tonooka, T.; Tsumuraya, Y.; Inagaki, Y.; Haruyama, N.; Larroque, O.; Jobling, S.A. Functional Characterization of Barley Betaglucanless Mutants Demonstrates a Unique Role for CslF6 in (1,3;1,4)-β-D-Glucan Biosynthesis. J. Exp. Bot. 2012, 63, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Schwerdt, J.G.; MacKenzie, K.; Wright, F.; Oehme, D.; Wagner, J.M.; Harvey, A.J.; Shirley, N.J.; Burton, R.A.; Schreiber, M.; Halpin, C.; et al. Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses. Plant Physiol. 2015, 168, 968–983. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.A.; Jobling, S.A.; Harvey, A.J.; Shirley, N.J.; Mather, D.E.; Bacic, A.; Fincher, G.B. The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like HvCslF Gene Family in Barley. Plant Physiol. 2008, 146, 1821–1833. [Google Scholar] [CrossRef] [Green Version]
- McCleary, B.V.; Codd, R. Measurement of (1 → 3),(1 → 4)-β-D-Glucan in Barley and Oats: A Streamlined Enzymic Procedure. J. Sci. Food Agric. 1991, 55, 303–312. [Google Scholar] [CrossRef]
- Wilson, S.M.; Ho, Y.Y.; Lampugnani, E.R.; Van de Meene, A.M.L.; Bain, M.P.; Bacic, A.; Doblin, M.S. Determining the Subcellular Location of Synthesis and Assembly of the Cell Wall Polysaccharide (1,3; 1,4)-β-D-Glucan in Grasses. Plant Cell 2015, 27, 754–771. [Google Scholar] [CrossRef] [Green Version]
- Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.-L.; Bacic, A.; Fincher, G.B. REVIEW: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chem. 2010, 87, 272–282. [Google Scholar] [CrossRef]
- Burton, R.A.; Fincher, G.B. Plant Cell Wall Engineering: Applications in Biofuel Production and Improved Human Health. Curr. Opin. Biotechnol. 2014, 26, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, R.; Del Frate, V.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; De Stefanis, E.; Sgrulletta, D. Genetic and Environmental Variability in Total and Soluble β-Glucan in European Oat Genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- Havrlentová, M.; Bieliková, M.; Mendel, L.; Kraic, J.; Hozlár, P. The Correlation of (1-3)(1-4)-Beta-d-Glucan with Some Qualitative Parameters in the Oat Grain. Agriculture 2008, 2, 65–71. [Google Scholar]
- Vega-Sánchez, M.E.; Verhertbruggen, Y.; Christensen, U.; Chen, X.; Sharma, V.; Varanasi, P.; Jobling, S.A.; Talbot, M.; White, R.G.; Joo, M.; et al. Loss of Cellulose Synthase—Like F6 Function Affects Mixed-Linkage Glucan Deposition, Cell Wall Mechanical Properties, and Defense Responses in Vegetative Tissues of Rice. Plant Physiol. 2012, 159, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Kozlova, L.V.; Nazipova, A.R.; Gorshkov, O.V.; Petrova, A.A.; Gorshkova, T.A. Elongating Maize Root: Zone-Specific Combinations of Polysaccharides from Type I and Type II Primary Cell Walls. Sci. Rep. 2020, 10, 10956. [Google Scholar] [CrossRef]
- Kozlova, L.V.; Snegireva, A.V.; Gorshkova, T.A. Distribution and Structure of Mixed Linkage Glucan at Different Stages of Elongation of Maize Root Cells. Russ. J. Plant Physiol. 2012, 59, 339–347. [Google Scholar] [CrossRef]
- Fincher, G.B. Revolutionary Times in Our Understanding of Cell Wall Biosynthesis and Remodeling in the Grasses. Plant Physiol. 2009, 149, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.; Fincher, G. Current Challenges in Cell Wall Biology in the Cereals and Grasses. Front. Plant Sci. 2012, 3, 130. [Google Scholar] [CrossRef] [Green Version]
- Roulin, S.; Buchala, A.J.; Fincher, G.B. Induction of (1→3,1→4)-β-D-Glucan Hydrolases in Leaves of Dark-Incubated Barley Seedlings. Planta 2002, 215, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, F.J.; Lunde, C.; Koch, M.; Kuhn, B.M.; Ruehl, C.; Brown, P.J.; Hoffmann, P.; Gohre, V.; Hake, S.; Pauly, M.; et al. A Mixed-Linkage (1,3;1,4)-β-D-Glucan Specific Hydrolase Mediates Dark-Triggered Degradation of This Plant Cell Wall Polysaccharide. Plant Physiol. 2021, 185, 1559–1573. [Google Scholar] [CrossRef]
- Kim, J.-B.; Olek, A.T.; Carpita, N.C. Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings. Plant Physiol. 2000, 123, 471–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibeaut, D.M.; Pauly, M.; Bacic, A.; Fincher, G.B. Changes in Cell Wall Polysaccharides in Developing Barley (Hordeum vulgare) Coleoptiles. Planta 2005, 221, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Trethewey, J.A.K.; Campbell, L.M.; Harris, P.J. (1→3),(1→4)-ß-d-Glucans in the Cell Walls of the Poales (Sensu Lato): An Immunogold Labeling Study Using a Monoclonal Antibody. Am. J. Bot. 2005, 92, 1660–1674. [Google Scholar] [CrossRef]
- Morrall, P.; Briggs, D.E. Changes in Cell Wall Polysaccharides of Germinating Barley Grains. Phytochemistry 1978, 17, 1495–1502. [Google Scholar] [CrossRef]
- Havrlentová, M.; Deáková, Ľ.; Kraic, J.; Žofajová, A. Can β-D-Glucan Protect Oat Seeds against a Heat Stress? Nova Biotechnol. Chim. 2016, 15, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Loskutov, I.; Polonskiy, V. Content of β-Glucans in Oat Grains as a Perspective Direction of Breeding for Health Products and Fodder (Review). Agric. Biol. 2017, 52, 646–657. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; Wang, R.; Pandiella, S.S.; Webb, C. Application of Cereals and Cereal Components in Functional Foods: A Review. Int. J. Food Microbiol. 2002, 79, 131–141. [Google Scholar] [CrossRef]
- McCann, M.C.; Carpita, N.C. Designing the Deconstruction of Plant Cell Walls. Curr. Opin. Plant Biol. 2008, 11, 314–320. [Google Scholar] [CrossRef]
- Hoson, T. Physiological Functions of Plant Cell Coverings. J. Plant Res. 2002, 115, 277–282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hozlár, P.; Gregusová, V.; Nemeček, P.; Šliková, S.; Havrlentová, M. Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development. Polymers 2022, 14, 2668. https://doi.org/10.3390/polym14132668
Hozlár P, Gregusová V, Nemeček P, Šliková S, Havrlentová M. Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development. Polymers. 2022; 14(13):2668. https://doi.org/10.3390/polym14132668
Chicago/Turabian StyleHozlár, Peter, Veronika Gregusová, Peter Nemeček, Svetlana Šliková, and Michaela Havrlentová. 2022. "Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development" Polymers 14, no. 13: 2668. https://doi.org/10.3390/polym14132668
APA StyleHozlár, P., Gregusová, V., Nemeček, P., Šliková, S., & Havrlentová, M. (2022). Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development. Polymers, 14(13), 2668. https://doi.org/10.3390/polym14132668