Effect of Graphene Oxide on Liquid Water-Based Waterproofing Bituminous Membranes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Preparation of GO-Modified Emulsion
2.2.2. Preparation Bituminous Membranes
2.2.3. Viscosity Measurement
2.2.4. ATR–FTIR Characterization
2.2.5. Accelerated Weathering Tester (QUV)
2.2.6. Surface Property Characterization
2.2.7. Mechanical Properties
2.2.8. Permeability
3. Results and Discussion
3.1. Properties of Bituminous Emulsion
3.2. ATR–FTIR
3.3. Water Contact Angle
3.4. Accelerated Weathering Studies
3.5. Mechanical Performance
3.6. Water Vapor Transport
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.; Gumtapure, V.; Perumal, D.A. Preparation of Functionalized Graphene-Linear Low-Density Polyethylene Composites by Melt Mixing Method. AIP Conf. Proc. 2020, 2247, 40010. [Google Scholar]
- Delgado, J.M.P.Q.; Černý, R.; Barbosa De Lima, A.G.; Guimarães, A.S. Advances in Building Technologies and Construction Materials 2016. Adv. Mater. Sci. Eng. 2016, 2016, 7320439. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Bai, X.; Qian, G.; Wang, F.; Li, Z.; Jin, J.; Zhang, Y. Aging Mechanism and Properties of SBS Modified Bitumen under Complex Environmental Conditions. Materials 2019, 12, 1189. [Google Scholar] [CrossRef] [Green Version]
- Lins, V.F.C.; Araújo, M.F.A.S.; Yoshida, M.I.; Ferraz, V.P.; Andrada, D.M.; Lameiras, F.S. Photodegradation of Hot-Mix Asphalt. Fuel 2008, 87, 3254–3261. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Evaluation of Aging Behaviors of Asphalt Binders through Different Rheological Indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- Islam, M.R.; Tarefder, R.A. Study of Asphalt Aging through Beam Fatigue Test. Transp. Res. Rec. J. Transp. Res. Board 2019, 2505, 115–120. [Google Scholar] [CrossRef]
- Petersen, J.C. Chapter 14 Chemical Composition of Asphalt as Related to Asphalt Durability. Dev. Pet. Sci. 2000, 40, 363–399. [Google Scholar] [CrossRef]
- Petersen, C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. E-Circ. 2009, E-C140. [Google Scholar] [CrossRef]
- Morian, N.; Hajj, E.Y.; Glover, C.J.; Sebaaly, P.E. Oxidative Aging of Asphalt Binders in Hot-Mix Asphalt Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2011, 107–116. [Google Scholar] [CrossRef]
- Pang, L.; Liu, K.; Wu, S.; Lei, M.; Chen, Z. Effect of LDHs on the Aging Resistance of Crumb Rubber Modified Asphalt. Constr. Build. Mater. 2014, 67, 239–243. [Google Scholar] [CrossRef]
- Apeagyei, A.K. Laboratory Evaluation of Antioxidants for Asphalt Binders. Constr. Build. Mater. 2011, 25, 47–53. [Google Scholar] [CrossRef]
- Kuang, D.; Yu, J.; Feng, Z.; Li, R.; Chen, H.; Guan, Y.; Zhang, Z. Performance Evaluation and Preventive Measures for Aging of Different Bitumens. Constr. Build. Mater. 2014, 66, 209–213. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mokhtar, K.A. Influence of Thermo-Oxidative Aging on Chemical Composition and Physical Properties of Polymer Modified Bitumens. Constr. Build. Mater. 2012, 26, 350–356. [Google Scholar] [CrossRef]
- Petersen, J.C.; Harnsberger, P.M. Asphalt Aging: Dual Oxidation Mechanism and Its Interrelationships with Asphalt Composition and Oxidative Age Hardening. Sage J. 1998, 1638, 47–55. [Google Scholar] [CrossRef]
- Chegenizadeh, A.; Aung, M.O.; Nikraz, H. Ethylene Propylene Diene Monomer (EPDM) Effect on Asphalt Performance. Buildings 2021, 11, 315. [Google Scholar] [CrossRef]
- Rheological Behavior and Micro-Structure of Chlorinated Polyethylene Modified Bitumen. Available online: https://www.researchgate.net/publication/290076141_Rheological_behavior_and_micro-structure_of_chlorinated_polyethylene_modified_bitumen (accessed on 28 February 2022).
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel 1996, 75, 681–686. [Google Scholar] [CrossRef]
- Panda, M.; Mazumdar, M. Engineering properties of eva-modified bitumen binder for paving mixes. J. Mater. Civ. Eng. 1999, 11. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986–1992. [Google Scholar] [CrossRef]
- Yvonne, B.M.; Müller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. [Google Scholar] [CrossRef]
- Chen, J.S.; Liao, M.C.; Tsai, H.H. Evaluation and Optimization of the Engineering Properties of Polymer-Modified Asphalt. Pract. Fail. Anal. 2002, 2, 75–83. [Google Scholar] [CrossRef]
- Polacco, G.; Muscente, A.; Biondi, D.; Santini, S. Effect of Composition on the Properties of SEBS Modified Asphalts. Eur. Polym. J. 2006, 42, 1113–1121. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, W.J.; James Seiler, J.F. Interim Criteria for Polymer-Modified Bitmninous Roofing Membrane Materials. Nist Building Science Series 167. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/BSS/nistbuildingscience167.pdf (accessed on 28 March 2022).
- Al Saadi, R.A.S. Effects of Natural and Accelerated Weathering on the Performance of Locally Manufactured Polymer-Modified Bituminous Waterproofing Membranes. Master’s Thesis, United Arab Emirates University, Al Ain, United Arab Emirates, 2008. [Google Scholar]
- Ozkan, E. Mechanical Performance of New and Naturally Weathered Bituminous and Synthetic Single-Ply Roofing Membranes; Istanbul Technical University: Istanbul, Turkey, 1999. [Google Scholar]
- Jamshidi, A.; Mohd Hasan, M.R.; Yao, H.; You, Z.; Hamzah, M.O. Characterization of the Rate of Change of Rheological Properties of Nano-Modified Asphalt. Constr. Build. Mater. 2015, 98, 437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, C.; Yu, J.; Shi, C.; Zhang, D. Influence of Surface Modification on Physical and Ultraviolet Aging Resistance of Bitumen Containing Inorganic Nanoparticles. Constr. Build. Mater. 2015, 98, 735–740. [Google Scholar] [CrossRef]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R.; Zhang, P. The Impact of Carbon Nano-Fiber Modification on Asphalt Binder Rheology. Constr. Build. Mater. 2012, 30, 257–264. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, Z.; Zhang, H.; Yu, J. Effect of Layered Double Hydroxides (LDHs) on Aging Properties of Bitumen. J. Test. Eval. 2012, 40. [Google Scholar] [CrossRef]
- Yu, J.Y.; Feng, P.C.; Zhang, H.L.; Wu, S.P. Effect of Organo-Montmorillonite on Aging Properties of Asphalt. Constr. Build. Mater. 2009, 23, 2636–2640. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Sasaki, I.; Nishizaki, I.; Meiarashi, S.; Moriyoshi, A. Effects of Film Thickness, Wavelength, and Carbon Black on Photodegradation of Asphalt. J. Jpn. Pet. Inst. 2005, 48, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Liu, Y.; Liu, Q.; Liu, P.; He, Y.; Zeng, Y. Preparation and Modification Mechanism Analysis of Graphene Oxide Modified Asphalts. Constr. Build. Mater. 2020, 238, 117706. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.B.T.; Ruoff, R.S. Graphene Oxide Papers Modified by Divalent Ions - Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano 2008, 2, 572–578. [Google Scholar] [CrossRef]
- Shi, G.; Meng, Q.; Zhao, Z.; Kuan, H.C.; Michelmore, A.; Ma, J. Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Appl. Mater. Interfaces 2015, 7, 13745–13757. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, X.; Guo, B.; Zhang, L.; Jia, D. Preparation of Butadiene–Styrene–Vinyl Pyridine Rubber–Graphene Oxide Hybrids through Co-Coagulation Process and in Situ Interface Tailoring. J. Mater. Chem. 2012, 22, 7492–7501. [Google Scholar] [CrossRef]
- Buy High Quality Graphene Oxide Products Online Today! Available online: https://www.cheaptubes.com/product-category/graphene-oxide/ (accessed on 28 March 2022).
- Liu, K.; Zhang, K.; Shi, X. Performance Evaluation and Modification Mechanism Analysis of Asphalt Binders Modified by Graphene Oxide. Constr. Build. Mater. 2018, 163, 880–889. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and Graphene Oxide and Their Uses in Barrier Polymers. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, Z.; Li, Y.; Pang, L.; Amirkhanian, S.; Riara, M. Evaluation of Aging Resistance of Graphene Oxide Modified Asphalt. Appl. Sci. 2017, 7, 702. [Google Scholar] [CrossRef]
- Ma, Y.W.; Zhao, H.Y.; Li, G.; Wang, Z.J.; Tang, H.; Wang, A.Q.; Ouyang, J. Property Improvement of Cement Emulsified Asphalt Paste Modified by Graphene Oxide. Adv. Mater. Sci. Eng. 2020, 2020, 3462342. [Google Scholar] [CrossRef] [Green Version]
- Habib, N.Z.; Aun, N.C.; Zoorob, S.E.; Lee, P.I. Use of Graphene Oxide as a Bitumen Modifier: An Innovative Process Optimization Study. Adv. Mater. Res. 2015, 1105, 365–369. [Google Scholar] [CrossRef]
- Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials 2018, 8, 942. [Google Scholar] [CrossRef] [Green Version]
- Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. Available online: https://www.astm.org/g0154-16.html (accessed on 20 January 2022).
- Hebbar, R.S.; Isloor, A.M.; Ismail, A.F. Contact Angle Measurements. Membr. Charact. 2017, 219–255. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Z.; Zhou, T.; Cao, L. Water Vapor Diffusion Models in Asphalt Mortar Considering Adsorption and Capillary Condensation. Constr. Build. Mater. 2021, 308, 125049. [Google Scholar] [CrossRef]
- Jianming Wei and Yuzhen Zhang (PDF) Influence of Aging on Surface Free Energy of Asphalt Binder. Available online: https://www.researchgate.net/publication/285827103_Influence_of_aging_on_surface_free_energy_of_asphalt_binder (accessed on 20 January 2022).
- Zeng, W.; Wu, S.; Pang, L.; Sun, Y.; Chen, Z. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt. Materials 2017, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yue, J.; Li, R.; Sun, Y. Evaluation of Aging Resistance of Asphalt Binder Modified with Graphene Oxide and Carbon Nanotubes. J. Mater. Civ. Eng. 2019, 31, 04019274. [Google Scholar] [CrossRef]
- Priolo, M.A.; Gamboa, D.; Holder, K.M.; Grunlan, J.C. Super Gas Barrier of Transparent Polymer–Clay Multilayer Ultrathin Films. Nano Lett. 2010, 10, 4970–4974. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sol-Sánchez, M.; Gámiz, F.; Rubio-Gámez, M.C. Mechanical and Thermal Properties of Graphene Modified Asphalt Binders. Constr. Build. Mater. 2018, 180, 265–274. [Google Scholar] [CrossRef]
- Han, M.; Muhammad, Y.; Wei, Y.; Zhu, Z.; Huang, J.; Li, J. A Review on the Development and Application of Graphene Based Materials for the Fabrication of Modified Asphalt and Cement. Constr. Build. Mater. 2021, 285, 122885. [Google Scholar] [CrossRef]
Bitumen Binder | Penetration at 25 °C 1 (dmm) | Softening Point 2 (°C) | Viscosity at 135 °C 3 (mm2 s−1) |
---|---|---|---|
Alma Petroli S.p.A. | 70–100 | 46–54 | min 230 |
Parameter | Test Method | Thresholds 1 | This Work Value |
---|---|---|---|
Water content | EN 1428 | 45 ± 2% | 43.0% |
Binder content | EN 1431 | 55 ± 2% | 57.0% |
Homogeneity | EN 1429 | max 0.2% | 0.05% |
Sedimentation at 7 days | EN 12847 | max 10% | 3% |
Cement mix | EN 12848 | <2 g | <2 g |
Sample | Test Method | Value at 20 °C (Poise) |
---|---|---|
Native | ASTM D 2196 | 680 ± 20 |
MGLQ | ASTM D 2196 | 680 ± 20 |
MGHQ | ASTM D 2196 | 700 ± 20 |
Sample | GO Content (wt.%) | WCA (°) | Thickness (mm) |
---|---|---|---|
Native | 0 | 105.6 ± 3.6 | 1.00 ± 0.05 |
MGLQ | 0.04 | 108.1 ± 4.2 | 0.91 ± 0.01 |
MGHQ | 0.12 | 106.4 ± 3.1 | 0.92 ± 0.03 |
Fd (g m m−2 h−1) | |||
---|---|---|---|
Membrane | 20 (°C) | 40 (°C) | 60 (°C) |
Native | 0.007 ± 0.001 | 0.010 ± 0.001 | 0.023 ± 0.001 |
MGLQ | 0.003 ± 0.001 | 0.005 ± 0.001 | 0.011 ± 0.001 |
MGHQ | 0.003 ± 0.001 | 0.006 ± 0.001 | 0.012 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Luca, G.; Filomia, M.; Fuoco, A.; Chiappetta, G.; Figoli, A. Effect of Graphene Oxide on Liquid Water-Based Waterproofing Bituminous Membranes. Polymers 2022, 14, 2221. https://doi.org/10.3390/polym14112221
Di Luca G, Filomia M, Fuoco A, Chiappetta G, Figoli A. Effect of Graphene Oxide on Liquid Water-Based Waterproofing Bituminous Membranes. Polymers. 2022; 14(11):2221. https://doi.org/10.3390/polym14112221
Chicago/Turabian StyleDi Luca, Giuseppe, Marcello Filomia, Alessio Fuoco, Giovanni Chiappetta, and Alberto Figoli. 2022. "Effect of Graphene Oxide on Liquid Water-Based Waterproofing Bituminous Membranes" Polymers 14, no. 11: 2221. https://doi.org/10.3390/polym14112221