Effect of Nonisoprene Degradation and Naturally Occurring Network during Maturation on the Properties of Natural Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TSR10, TSR10CV and TSR3CV
- (1)
- Technically Specified Rubber 10 (TSR 10): The diluted latex was left to coagulate naturally in the cups. The coagula were retrieved after 5 days, and deposited on barns for an additional 21 days. Then the coagula were finally prepared into the samples by washing, crushing, creping, granulating and drying for 5 h at 110 °C.
- (2)
- Technically Specified Rubber 10 Constant Viscosity (TSR 10CV): 0.8 wt.‰ of final dry rubber weight Hydroxylamine sulphate was introduced into the diluted latex for 30 min to stabilize the rubber by inhibiting branching between polyisoprene chains. The latex was left to coagulate naturally in the cups for 5 days. Then, the coagula were retrieved and deposited on barns for an additional 21 days. The samples were finally obtained by washing, crushing, creping, granulating and drying the coagula for 5 h at 110 °C.
- (3)
- Technically Specified Rubber 3 Constant Viscosity (TSR 3CV): 0.8 wt.‰ of final dry rubber weight neutral hydroxylamine sulphate was introduced into the diluted latex for 30 min. As a comparison, TSR 3CV does not use a maturation process and the latex was directly coagulated by adjust pH value of solution to 5.4 with 2 wt.%. Then, the sample was stored at room temperature for 20 h. The final TSR 3CV sample was obtained by the same coagulation and drying process as TSR 10 and TSR 10CV samples.
2.3. Preparation of NR Vulcanizates
2.4. Characterizations
3. Results and Discussion
3.1. Characterization of Natural Rubber
3.2. Conventional Mechanical Properties of NR Vulcanizates
3.3. Compression Heat Generation and Fatigue Life of NR Vulcanizates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, Y. Structural Characterization of Natural Polyisoprenes: Solve the Mystery of Natural Rubber Based on Structural Study. Rubber Chem. Technol. 2001, 74, 355–375. [Google Scholar] [CrossRef]
- Park, H.S.; Woo, C.S. Mechanical Properties Evaluation of Natural and Synthetic Rubber. Elastomers Compos. 2007, 42, 305–343. [Google Scholar]
- Svenningsson, L.; Sparrman, T.; Bialik, E.; Bernin, D.; Nordstierna, L. Molecular orientation distribution of regenerated cellulose fibers investigated with rotor synchronized solid state NMR spectroscopy. Cellulose 2019, 33, 211–249. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Terenzi, C.; Furó, I.; Berglund, L.A.; Wohlert, J. Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates. Macromolecules 2019, 52, 77–112. [Google Scholar] [CrossRef]
- Sainumsai, W.; Toki, S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J.; Rong, L.; Hsiao, B.S.; Suchiva, K. Dependence of The Onset of Strain-Induced Crystallization of Natural Rubber and Its Synthetic Analogue on Crosslink and Entanglement by Using Synchrotron X-Ray. Rubber Chem. Technol. 2017, 90, 728–742. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. Comparative Study on Strain-Induced Crystallization Behavior of Peroxide Cross-Linked and Sulfur Cross-Linked Natural Rubber. Macromolecules 2008, 41, 5876–5884. [Google Scholar] [CrossRef]
- Ortiz, C.; Boyce, M. Materials science. Bioinspired structural materials. Science 2008, 319, 1053–1054. [Google Scholar] [CrossRef]
- Bottier, C. Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In Latex, Laticifers and Their Molecular Components: From Functions to Possible Applications; Nawrot, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 7, pp. 201–237. [Google Scholar]
- Mcmahan, C.; Kostyal, D.; Lhamo, D.; Cornish, K. Protein influences on guayule and Hevea natural rubber sol and gel. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, H.; Luo, M.; Wei, Q.; Jing, Z. A rheological study on non-rubber component networks in natural rubber. RSC Adv. 2015, 5, 91742–91750. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.; Tang, Z.; Lin, T.; Guo, B.; Huang, G. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 2015, 11, 2290–2299. [Google Scholar] [CrossRef]
- Toki, S.; Hsiao, B.S.; Amnuaypornsri, S.; Sakdapipanich, J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer 2009, 50, 2142–2148. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Yu, H.; Zhao, P.; Wang, Q.; Liao, L.; Luo, M.; Zheng, T.; Liao, S.; Peng, Z. New insight into naturally occurring network and entanglements induced strain behavior of vulcanized natural rubber. Polymer 2022, 37, 22–64. [Google Scholar] [CrossRef]
- Ping-Yue, W.; Yong-Zhou, W.; Bei-Long, Z.; Hong-Hai, H. Effect of non-rubber substances on vulcanization kinetics of natural rubber. J. Appl. Polym. Sci. 2012, 126, 1183–1187. [Google Scholar] [CrossRef]
- Wei, Y.C.; Liu, G.X.; Zhang, H.F.; Zhao, F.; Liao, S. Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 2019, 183, 121911. [Google Scholar] [CrossRef]
- Nun-Anan, P.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Nakason, C. Novel approach to determine non-rubber content in Hevea brasiliensis: Influence of clone variation on properties of un-vulcanized natural rubber. Ind. Crops Prod. 2018, 118, 38–47. [Google Scholar] [CrossRef]
- Moreno, R.M.B.; Ferreira, M.; Gonçalves, P.D.S.; Mattoso, L.H.C. Technological properties of latex and natural rubber of Hevea brasiliensis clones. Sci. Agric. 2005, 62, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Galiani, P.D.; Martins, M.A.; Gon Alves, P.; Mcmahan, C.M.; Mattoso, L. Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber. J. Appl. Polym. Sci. 2011, 122, 2749–2755. [Google Scholar] [CrossRef]
- Bonfils, F.; Doumbia, A.; Char, C.; Beuve, J.S. Evolution in the natural rubber native structure and plasticity retention index from the first tapping of clonal trees. J. Appl. Polym. Sci. 2010, 97, 903–909. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H. Insight on natural rubber’s relationship with coagulation methods and some of its properties during storage. J. Appl. Polym. Sci. 2021, 24, 555–562. [Google Scholar] [CrossRef]
- Intapun, J.; Sainte-Beuve, J.; Bonfils, F.; Tanrattanakul, V.; Dubreucq, E.; Vaysse, L. Effect of microorganisms during the initial coagulum maturation of Hevea natural rubber. J. Appl. Polym. Sci. 2010, 118, 1341–1348. [Google Scholar] [CrossRef]
- Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. J. Appl. Microbiol. 2015, 117, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Salomez, M.; Subileau, M.; Vallaeys, T.; Santoni, S.; Bonfils, F.; Sainte-Beuve, J.M.; Intapun, J.; Granet, F.O.; Vaysse, L.; Dubreucq, É. Microbial communities in natural rubber coagula during maturation: Impacts on technological properties of dry natural rubber. J. Appl. Microbiol. 2018, 124, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.P.; Li, C.P.; Ll, S.D.; Kong, L.X.; She, X.D. Study on the Properties of Natural Rubber during Maturation. J. Polym. Mater. 2009, 26, 351–360. [Google Scholar]
- Fri, P.S.; Nkeng, G.E.; Ehabe, E.E. Effect of natural coagula maturation on the processability, cure, and mechanical properties of unfilled vulcanizates of Hevea natural rubber. J. Appl. Polym. Sci. 2007, 103, 2359–2363. [Google Scholar] [CrossRef]
- Ehabe, E.; Roux, Y.L.; Ngolemasango, F.; Bonfils, F.; Nkeng, G.; Nkouonkam, B.; Sainte-Beuve, J.; Gobina, M.S. Effect of maturation on the bulk viscosity and molecular chain length of cuplump natural rubber. J. Appl. Polym. Sci. 2010, 86, 703–708. [Google Scholar] [CrossRef]
- Qi, N.L.; Li, P.W.; Zeng, X.H.; Huang, H.H.; Yang, Z.M.; Gong, X. Comparison of Kjeldahl and the Elemental Analysis Methods for Determination of Nitrogen Content in Raw Natural Rubber. Adv. Mater. Res. 2013, 815, 722–726. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Muga, A.; Castresana, J.; Goni, F.M. Quantitative studies of the structure of proteins in solution by fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 1993, 59, 23–56. [Google Scholar] [CrossRef]
- Vennemann, N.; Bökamp, K.; Bröker, D. Crosslink Density of Peroxide Cured TPV. Macromol. Symp. 2010, 245–246, 641–650. [Google Scholar] [CrossRef]
- Flory, P.J. Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A—R—Bf-1 Type Units. J. Am. Chem. Soc. 1952, 74, 392–443. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Shah, Z.; Kanwal, N.; Zeb, S. Biodegradation of natural and synthetic rubbers: A review. Int. Biodeterior. Biodegrad. 2013, 83, 145–157. [Google Scholar] [CrossRef]
- Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 2005, 6, 1858. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.C.; Liu, G.X.; Zhang, L.; Zhao, F.; Liao, S.; Luo, M.C. Exploring the unique characteristics of natural rubber induced by coordination interaction between proteins and Zn 2+. Polymer 2020, 193, 122357. [Google Scholar] [CrossRef]
- Chukwu, M.N.; Madufor, I.C.; Ayo, M.D.; Ekebafe, L.O. Effect of Stearic Acid Level on the Physical Properties of Natural Rubber Vulcanisate. Pac. J. Sci. Technol. 2011, 12, 344–350. [Google Scholar]
- Poh, B.T.; Tan, E.K. Mooney scorch time and cure index of epoxidized natural rubber in presence of sodium carbonate. J. Appl. Polym. Sci. 2010, 82, 1352–1355. [Google Scholar] [CrossRef]
- Amnuaypornsri, S.; Sakdapipanich, J.; Tanaka, Y. Highly purified natural rubber by saponificaion of latex: Analysis of green and cured properties. J. Appl. Polym. Sci. 2010, 118, 3524–3531. [Google Scholar] [CrossRef]
- Che, J.; Burger, C.; Toki, S.; Rong, L.; Hsiao, B.S.; Amnuaypornsri, S.; Sakdapipanich, J. Crystal and Crystallites Structure of Natural Rubber and Synthetic cis- 1,4-Polyisoprene by a New Two Dimensional Wide Angle Xray Diffraction Simulation Method. I. Strain-Induced Crystallization. Macromolecules 2013, 46, 4520–4528. [Google Scholar] [CrossRef]
- Mooney, M. A Theory of Large Elastic Deformation. J. Appl. Phys. 1940, 11, 582–592. [Google Scholar] [CrossRef]
- Treloar, L. Theory of Large Elastic Deformations. Nature 1940, 151, 582–592. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, B.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. Relationship between the material properties and fatigue crack-growth characteristics of natural rubber filled with different carbon blacks. J. Appl. Polym. Sci. 2010, 117, 3441–3447. [Google Scholar] [CrossRef]
- Schl Gl, S.; Trutschel, M.L.; Chassé, W.; Riess, G.; Saalw Chter, K. Entanglement Effects in Elastomers: Macroscopic vs. Microscopic Properties. Macromolecules 2014, 47, 2759–2773. [Google Scholar] [CrossRef]
- Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, S.; Albouy, P.A.; Rault, J. Effective Local Deformation in Stretched Filled Rubber. Macromolecules 2003, 36, 9093–9099. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580–588. [Google Scholar] [CrossRef]
- Edwards, S.F. The theory of rubber elasticity. Br. Polym. J. 1977, 9, 140–143. [Google Scholar] [CrossRef]
- Boyce, M.C.; Arruda, E.M. Constitutive Models of Rubber Elasticity: A Review. Rubber Chem. Technol. 2000, 73, 504–523. [Google Scholar] [CrossRef]
- Miehe, C.; Goektepe, S.; Lulei, F. A micro-macro approach to rubber-like materials—Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 2004, 52, 2617–2660. [Google Scholar] [CrossRef]
- Gent, A.N. A New Constitutive Relation for Rubber. Rubber Chem. Technol. 2012, 69, 59–61. [Google Scholar] [CrossRef]
- Edwards, S.F.; Vilgis, T.A. The tube model theory of rubber elasticity. Rep. Prog. Phys. 1988, 51, 243–252. [Google Scholar] [CrossRef]
- Klüppel, M.; Menge, H.; Schmidt, H.; Schneider, H.; Schuster, R.H. Influence of Preparation Conditions on Network Parameters of Sulfur-Cured Natural Rubber. Macromolecules 2001, 34, 8107–8116. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Wei, Y.C.; Zhang, H.F.; Luo, M.C.; Zheng, T.T.; Liao, S. Analysis of the thermogenesis mechanism of natural rubber under high speed strain. Polym. Adv. Technol. 2020, 31, 1994–2006. [Google Scholar] [CrossRef]
- Aharoni, S.M. Correlations between chain parameters and the plateau modulus of polymers. Macromolecules 1986, 19, 426–434. [Google Scholar] [CrossRef]
- Klüppel, M.; Schramm, J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theory Simul. 2000, 9, 742–754. [Google Scholar] [CrossRef]
Chemical | Quantity (Phr) |
---|---|
Natural rubber | 100.0 |
Stearic acids | 0.5 |
Accelerator M | 0.5 |
ZnO | 6.0 |
Sulfur | 3.5 |
Sample | Nitrogen Content a (wt.%) | C14 b (wt.%) | C16 b (wt.%) | C17 b (wt.%) | C18H32O2 b (wt.%) | C18H34O2 b (wt.%) | C18H36O2 b (wt.%) | C20 b (wt.%) | Total Fatty Acid b (wt.%) |
---|---|---|---|---|---|---|---|---|---|
TSR 3CV | 0.38 | - | 0.18 | - | 0.78 | 0.43 | 0.31 | 0.03 | 1.73 |
TSR 10CV | 0.15 | 0.04 | 0.35 | - | 0.06 | 0.07 | 0.23 | 0.09 | 0.84 |
TSR 10 | 0.15 | 0.06 | 0.38 | - | 0.04 | 0.05 | 0.21 | 0.07 | 0.81 |
Sample | Gel Content (wt.%) | Initial Plasticity (P0) | Mooney Viscosity ML (1 + 4) | PRI | ΔM | ΔP |
---|---|---|---|---|---|---|
TSR 3CV | 19.8 | 42.5 | 89.8 | 75.6 | 4.5 | 3.0 |
TSR 10CV | 20.2 | 44.0 | 91.3 | 55.6 | 7.4 | 4.5 |
TSR 10 | 33.6 | 64.0 | 108.6 | 53.9 | 15.3 | 13.0 |
Sample | Gc, Mpa | Ge, Mpa | Vc, 10−4mol·cm−3 | |
---|---|---|---|---|
TSR 10 | 0.34 | 0.27 | 4.33 | 2.87 |
TSR 10CV | 0.32 | 0.24 | 4.35 | 2.61 |
TSR 3CV | 0.18 | 0.23 | 5.75 | 1.52 |
Sample | N | d0, nm | ne | ∆S, J·cm3·K−1 | ∆T, °C | Fatigue, Million Times |
---|---|---|---|---|---|---|
TSR 3CV | 57.75 | 2.30 | 9.12 | 5.79 | 14.5 | 3.01 |
TSR 10CV | 33.53 | 2.25 | 8.74 | 2.12 | 3.3 | >6 |
TSR 10 | 29.53 | 2.12 | 7.77 | 2.09 | 2.7 | >6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Wang, B.; Lin, H.; Peng, W.; Zhang, F.; Li, G.; Ke, D.; Liao, J.; Liao, L. Effect of Nonisoprene Degradation and Naturally Occurring Network during Maturation on the Properties of Natural Rubber. Polymers 2022, 14, 2180. https://doi.org/10.3390/polym14112180
Chen G, Wang B, Lin H, Peng W, Zhang F, Li G, Ke D, Liao J, Liao L. Effect of Nonisoprene Degradation and Naturally Occurring Network during Maturation on the Properties of Natural Rubber. Polymers. 2022; 14(11):2180. https://doi.org/10.3390/polym14112180
Chicago/Turabian StyleChen, Guojing, Bingbing Wang, Hongtu Lin, Wenfeng Peng, Fuquan Zhang, Gaorong Li, Dongbin Ke, Jianhe Liao, and Lusheng Liao. 2022. "Effect of Nonisoprene Degradation and Naturally Occurring Network during Maturation on the Properties of Natural Rubber" Polymers 14, no. 11: 2180. https://doi.org/10.3390/polym14112180
APA StyleChen, G., Wang, B., Lin, H., Peng, W., Zhang, F., Li, G., Ke, D., Liao, J., & Liao, L. (2022). Effect of Nonisoprene Degradation and Naturally Occurring Network during Maturation on the Properties of Natural Rubber. Polymers, 14(11), 2180. https://doi.org/10.3390/polym14112180