Fast-Growing Magnetic Wood Synthesis by an In-Situ Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Wood Samples
2.2. Preparation of Impregnation Solutions
2.3. The Impregnation Process
2.4. Characterisation of Impregnated Jabon Wood
2.4.1. Fourier Transform Infrared Spectrometry
2.4.2. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy
2.4.3. X-ray Diffraction Analysis
2.4.4. Vibrating Sample Magnetometric
2.5. Data Analysis
3. Results
3.1. Dimensional Stability of Magnetic Jabon Wood
3.2. Magnetic Jabon Wood Characterisation
3.2.1. FTIR Analysis
3.2.2. Macro- and Microscopic Analysis (SEM and SEM-EDX Analysis)
3.2.3. XRD Analysis
3.2.4. Magnetic Characterisation
4. Discussion
4.1. Dimensional Stability of Magnetic Jabon Wood
4.2. Magnetic Jabon Wood Characterisation
4.2.1. FTIR Analysis
4.2.2. Macro and Microscopic Analysis (SEM and SEM-EDX Analysis)
4.2.3. XRD Analysis
4.2.4. Magnetic Characterisation
5. Conclusions
- The density and BE were increased in magnetic jabon wood, while WU was decreased for both precursors. ASE of magnetic jabon wood was 64.5% with the NaOH precursor and 87.1% with the NH4OH precursor.
- Based on FTIR analyses, magnetite was successfully synthesised in jabon wood; further, based on SEM-EDX analysis, the iron magnetite particles stuck to the cell walls of jabon wood with a value of 40% for NaOH precursors and 23% for NH4OH precursors.
- XRD tests showed that the crystal sizes of Fe3O4 obtained from syntheses with strong and weak bases as precursors were almost the same, namely, 10.8642 nm and 10.1996 nm. The crystals formed were Fe3O4 crystals.
- VSM analyses showed that magnetic jabon wood synthesized in-situ with strong and weak base precursors was classified as a superparamagnetic material with soft magnetic properties.
- Magnetically charged jabon wood was successfully synthesised in-situ with strong and weak base precursors, but based on the results of physical properties and characterisation tests, the in-situ method using a strong base had better results. The use of a strong base must be adjusted to the mole ratio according to the chemical equation for the formation of magnetite so that there is no excess base that can catalyse the degradation of the wood structural unit.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Environment and Forestry. Statistics of the Ministry of Environment and Forestry in 2019; Office of the State Minister for the Environment: Jakarta, Indonesia, 2019.
- Ministry of Environment and Forestry. Statistics of the Ministry of Environment and Forestry 2015; Office of the State Minister for the Environment: Jakarta, Indonesia, 2015.
- Ministry of Environment. Indonesia’s Forest and Forestry Status 2018; Office of the State Minister for the Environment: Jakarta, Indonesia, 2018.
- Central Statistics Agency. Statistics of Forestry Production 2019; BPS-Statistics Indonesia: Jakarta, Indonesia, 2019.
- Royal Botanic Garden Kew, Plants of the World Online. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:914296-1 (accessed on 5 May 2022).
- Wardani, L.; Risnasari, I.; Yasni; Hadi, Y.S. Resistance of jabon timber modified with styrene and methyl methacrylate against drywood termites and subterranean termites. In Proceedings of 9th Pacific Rim Termite Research Group Conference, Hanoi, Vietnam, 27–28 February 2012; Science and Technics Publishing House: Hanoi, Vietnam, 2012; pp. 73–78. [Google Scholar]
- Hadi, Y.S.; Rahayu, I.S.; Danu, S. Physical and mechanical properties of methyl methacrylate impregnated jabon wood. J. Indian Acad. Wood Sci. 2013, 10, 77–80. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Rahayu, I.S.; Danu, S. Termite resistance of jabon wood impregnated with methyl methacrylate. J. Trop. For. Sci. 2015, 27, 25–29. [Google Scholar]
- Gabrielli. Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci. Technol. 2010, 44, 95–104. [Google Scholar] [CrossRef]
- Fukuta, S.; Watanabe, A.; Akahori, Y.; Makita, A.; Imamura, Y.; Sasaki, Y. Bending properties of compressed wood impregnated with phenolic resin through drilled holes. Eur. J. Wood Wood Prod. 2011, 69, 633–639. [Google Scholar] [CrossRef]
- Kumar, R.; Inbaraj, B.S.; Chen, B.H. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material. Mater. Res. Bull. 2010, 45, 1603–1607. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kaymakci, A. Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongate wood. Ind. Crop. Prod. 2013, 43, 457–464. [Google Scholar] [CrossRef]
- Trey, S.M.; Olsson, R.T.; Strom, V.; Berglund, L.A.; Johansson, M. Controlled deposition of magnetic particles within the 3-D template wood: Making use of the natural hierarchical structure of wood. RSC Adv. 2014, 4, 35678–35685. [Google Scholar] [CrossRef] [Green Version]
- Oka, H.; Terui, M.; Osada, H.; Sekino, N.; Namizaki, Y.; Dawson, F. Electromagnetic wave absorption characteristics adjustment method of recycled powder-type magnetic wood for use as building material. IEEE Trans. Magn. 2012, 48, 3498–3500. [Google Scholar] [CrossRef]
- Sezer, N.; Arı, İ.; Biçer, Y.; Koç, M. Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. J. Magn. Magn. Mater. 2021, 538, 168300. [Google Scholar] [CrossRef]
- Segmehl, J.S.; Laromaine, A.; Keplinger, T.; May-Masnou, A.; Burgert, I.; Roig, A. Magnetic wood by: In situ synthesis of iron oxide nanoparticles via a microwave-assisted route. J. Mater. Chem. C 2018, 6, 3395–3402. [Google Scholar] [CrossRef] [Green Version]
- Merk, V.; Chanana, M.; Gierlinger, N.; Hirt, A.M.; Burgert, I. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Appl. Mater. Interfaces 2014, 6, 9760–9767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Wei, Y.; Liu, C.; Chen, Y.; Ma, Y.; Chen, H.; Liang, X.; Sun, N.X.; Zhu, H. Lightweight and Construable Magnetic Wood for Electromagnetic Interference Shielding. Adv. Eng. Mater. 2020, 22, 200257. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Zhan, X.; Li, J. Hydrothermal synthesis of magnetic wood composites and improved wood properties by precipitation with CoFe2O4/hydroxyapatite. RSC Adv. 2015, 5, 45919–45927. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Xiao, S.; Gao, R.; Zhang, W.; Li, J.; Zhan, X. Magnetic Wood as an Effective Induction Heating Material: Magnetocaloric Effect and Thermal Insulation. Adv. Mater. Interfaces 2017, 4, 1700777. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Zhang, Y.; Zhang, S.; Li, J. Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability. Wood Sci. Technol. 2016, 50, 503–517. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, R.; Rao, W.; Cheng, Y.; Ekoko, B.G. Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation. J. Radioanal. Nucl. Chem. 2006, 270, 285–289. [Google Scholar] [CrossRef]
- Peternele, W.S.; Monge Fuentes, V.; Fascineli, M.L.; Rodrigues Da Silva, J.; Silva, R.C.; Lucci, C.M.; Bentes De Azevedo, R. Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. J. Nanomater. 2014, 2014, 682985. [Google Scholar] [CrossRef] [Green Version]
- BS-373; Methods of Testing Small Clear Specimens of Timber. British Standard: London, UK, 1957.
- Daoush, W.M. Co-Precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J. Nanomed. Res. 2017, 5, 118. [Google Scholar] [CrossRef]
- Rowell, R.M.; Ellis, W.D. Determination of dimensional stabilization of wood using the water-soak method. Wood Fiber 1978, 10, 104–111. [Google Scholar]
- Mohammed, S.; Mohammed, H. Characterization of magnetite and hematite using infrared spectroscopy. Arab J. Sci. Res. Publ. 2018, 2, 38–44. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2006, 35, 10815–10837. [Google Scholar] [CrossRef]
- Pereira, H.; Graça, J.; Rodrigues, J. Wood chemistry in relation to quality. Cheminform 2004, 35, 446298. [Google Scholar] [CrossRef]
- Schmiedl, D.; Endisch, S.; Pindel, E.; Rückert, D.; Reinhardt, S.; Schweppe, R.; Unkelbach, G. Base catalyzed degradation of Lignin for the generation of oxy-aromatic compounds—Possibilities and challenges. Erdol Erdgas Kohle incl Oil Gas Eur. Mag. 2012, 128, 357–363. [Google Scholar]
- Lin, C.C.; Ho, J.M. Structural analysis and catalytic activity of Fe3O4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceram. Int. 2014, 40, 10275–10282. [Google Scholar] [CrossRef]
- Gao, H.L.; Wu, G.Y.; Guan, H.T.; Zhang, G.L. In situ preparation and magnetic properties of Fe3O4/wood composite. Mater. Technol. 2012, 27, 101–103. [Google Scholar] [CrossRef]
- Bowyer, J.L.; Shmulsky, R.; Haygreen, J.G. Forest Product and Wood Science: An Introduction, 5th ed.; Blackwell Publishing: Ames, IA, USA, 2007. [Google Scholar]
- Nypelö, T. Magnetic cellulose: Does extending cellulose versatility with magnetic functionality facilitate its use in devices? J. Mater. Chem. C 2022, 10, 805–818. [Google Scholar] [CrossRef]
- Rahmawati, R.; Permana, M.G.; Harison, B.; Nugraha; Yuliarto, B.; Suyatman; Kurniadi, D. Optimization of frequency and stirring rate for synthesis of magnetite (Fe3O4) nanoparticles by using coprecipitation- ultrasonic irradiation methods. Procedia Eng. 2017, 170, 55–59. [Google Scholar] [CrossRef]
- Chang, R. Chemistry, 10th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Petrucci, R.H. General Chemistry: An Integrated Approach, 10th ed.; Prentice Hall, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley and Sons: Hoboken, NJ, USA, 2006; ISBN 9780470021729. [Google Scholar]
- Hadiyane, A.; Dungani, R.; Dewi, S.P.; Rumidatul, A. Effect of chemical modification of Jabon wood (Anthocephalus cadamba Miq.) on morphological structure and dimensional stability. J. Biol. Sci. 2018, 18, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Dirna, F.C.; Rahayu, I.; Maddu, A.; Darmawan, W.; Nandika, D.; Prihatini, E. Nanosilica synthesis from betung bamboo sticks and leaves by ultrasonication. Nanotechnol. Sci. Appl. 2020, 13, 131–136. [Google Scholar] [CrossRef]
- Rahayu, I.; Darmawan, W.; Zaini, L.H.; Prihatini, E. Characteristics of fast-growing wood impregnated with nanoparticles. J. For. Res. 2020, 31, 677–685. [Google Scholar] [CrossRef]
- Prihatini, E.; Maddu, A.; Rahayu, I.S.; Kurniati, M.; Darmawan, W. Improvement of physical properties of jabon (Anthocephalus cadamba) through the impregnation of nano-SiO2and melamin formaldehyde furfuril alcohol copolymer. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012061. [Google Scholar] [CrossRef]
- Yaws, C.L. Handbook Of Properties Of The Chemical Elements; K-Novel: San Antonio, TX, USA, 2011. [Google Scholar]
- Hazarika, A.; Maji, T. Properties of softwood polymer composites impregnated with nanoparticles and melamine formaldehyde furfuryl alcohol copolymer. Poly. Eng. Sci. 2014, 54, 1019–1029. [Google Scholar] [CrossRef]
- Stojilovic, N.; Isaacs, D.E. Inquiry-based experiment with powder XRD and FeS2 crystal: “discovering” the (400) Peak. J. Chem. Educ. 2019, 96, 1449–1452. [Google Scholar] [CrossRef]
- Yu, B.Y.; Kwak, S.Y. Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. J. Mater. Chem. 2010, 20, 8320–8328. [Google Scholar] [CrossRef]
- Sumadiyasa, M.; Manuaba, I.B.S. Determining crystal size using Scherrer formula, Williamson-Hull Plot, and particle size using SEM. Bul. Fis. 2018, 19, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Tebriani, S. Analysis of the Vibrating Sample Magnetometer (VSM) on the electrodeposition results of a thin magnetite layer using a continuous direct current. Nat. Sci. J. 2019, 5, 722–730. [Google Scholar]
- Tang, T.; Fu, Y. Formation of chitosan/sodium phytate/nano-Fe3O4 magnetic coatings on wood surfaces via layer-by-layer self-assembly. Coatings 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Bukit, N.; Frida, E.; Simamora, P.; Sinaga, T. Synthesis Of Fe3O4 nanoparticles of iron sand coprecipitation method with Polyethylene Glycol 6000. Chem. Mater. Res. J. 2015, 7, 110–115. [Google Scholar]
Treatment | Oven-Dried Density | WPG | BE | WU | ASE |
---|---|---|---|---|---|
Untreated | 0.32 ± 0.04 a | 0.00 a | 2.21 ± 1.00 a | 125.17 ± 16.62 a | - |
In-situ NaOH | 0.36 ± 0.01 a | 47.44 ± 7.85 b | 7.13 ± 2.81 b | 110.89 ± 12.81 a | 64.26 ± 9.76 b |
In-situ NH4OH | 0.34 ± 0.04 a | 31.38 ± 4.99 c | 5.88 ± 1.13 b | 104.38 ± 12.43 a | 87.05 ± 14.63 c |
Sample | Fe (% Wt) |
---|---|
In-situ NaOH | 40.11 |
In-situ NH4OH | 23.39 |
Sample | Ms (emu/g) | Mr (emu/g) | Hc (Oe) |
---|---|---|---|
In-situ NaOH | 0.0739 | 0.0198 | 5.97 × 10−5 |
In-situ NH4OH | 0.0730 | 0.0176 | 1.65 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahayu, I.; Prihatini, E.; Ismail, R.; Darmawan, W.; Karlinasari, L.; Laksono, G.D. Fast-Growing Magnetic Wood Synthesis by an In-Situ Method. Polymers 2022, 14, 2137. https://doi.org/10.3390/polym14112137
Rahayu I, Prihatini E, Ismail R, Darmawan W, Karlinasari L, Laksono GD. Fast-Growing Magnetic Wood Synthesis by an In-Situ Method. Polymers. 2022; 14(11):2137. https://doi.org/10.3390/polym14112137
Chicago/Turabian StyleRahayu, Istie, Esti Prihatini, Rohmat Ismail, Wayan Darmawan, Lina Karlinasari, and Gilang Dwi Laksono. 2022. "Fast-Growing Magnetic Wood Synthesis by an In-Situ Method" Polymers 14, no. 11: 2137. https://doi.org/10.3390/polym14112137
APA StyleRahayu, I., Prihatini, E., Ismail, R., Darmawan, W., Karlinasari, L., & Laksono, G. D. (2022). Fast-Growing Magnetic Wood Synthesis by an In-Situ Method. Polymers, 14(11), 2137. https://doi.org/10.3390/polym14112137