A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment
Abstract
:1. Introduction
2. Theory
3. Experimental
4. Results and Discussion
4.1. Optical Simulation of the Electrospun PVA-Coated Sensor
4.2. Simulated Optical Spectra for the Electrospun PVA-Coated Sensors
4.3. Temperature Experiments on the Electrospun PVA-Coated Sensor of the U-Shaped Optical Fiber
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Rashid, S.A.; Othman, R.N.I.R.; Hussein, M.Z. Synthesis, Technology and Applications of Carbon Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Optical fiber sensors based on polymeric sensitive coatings. Polymers 2018, 10, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tien, C.-L.; Mao, T.-C.; Li, C.-Y. Lossy mode resonance sensors fabricated by RF magnetron sputtering GZO thin film and D-shaped fibers. Coatings 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.F.; Badar, M.; Egbu, J.C.; Lu, P.; Buric, M.; Ohodnicki, P.R., Jr. Fully distributed optical fiber sensor for water and humidity monitoring. In Proceedings of the Fiber Optic Sensors and Applications XVI, Baltimore, MD, USA, 16–17 May 2019; p. 1100007. [Google Scholar]
- Lee, S.-L.; Kim, J.; Choi, S.; Han, J.; Seo, G.; Lee, Y.W. Fiber-optic label-free biosensor for SARS-CoV-2 spike protein detection using biofunctionalized long-period fiber grating. Talanta 2021, 235, 122801. [Google Scholar] [CrossRef] [PubMed]
- Manzo, M.; Cavazos, O.; Huang, Z.; Cai, L. Plasmonic and hybrid whispering gallery mode–based biosensors: Literature review. JMIR Biomed. Eng. 2021, 6, e17781. [Google Scholar] [CrossRef]
- Peng, J.; Jia, S.; Bian, J.; Zhang, S.; Liu, J.; Zhou, X. Recent progress on electromagnetic field measurement based on optical sensors. Sensors 2019, 19, 2860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayleigh, L. CXII The problem of the whispering gallery. J. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1910, 20, 1001–1004. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Chen, Y.; Han, Q.; Lü, X. Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid. IEEE Photonics J. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Peng, X.; Cha, Y.; Zhang, H.; Li, Y.; Ye, J.J.O. Light intensity modulation temperature sensor based on U-shaped bent single-mode fiber. Optik 2017, 130, 813–817. [Google Scholar] [CrossRef]
- Fujita, S.; Xu, H.; Dong, Y.; Okahisa, Y. Reconstruction of Fibroin Nanofibers (FNFs) via Electrospinning: Fabrication of Poly(vinyl alcohol)/FNFs Composite Nanofibers from Aqueous Solution. Polymers 2022, 14, 43. [Google Scholar] [CrossRef]
- Du, L.; Xu, H.; Li, T.; Zhang, Y.; Zou, F. Fabrication of silver nanoparticle/polyvinyl alcohol/polycaprolactone hybrid nanofibers nonwovens by two-nozzle electrospinning for wound dressing. Fibers Polym. 2016, 17, 1995–2005. [Google Scholar] [CrossRef]
- Du, L.; Xu, H.; Li, T.; Zhang, Y.; Zou, F. Fabrication of ascorbyl palmitate loaded poly (caprolactone)/silver nanoparticle embedded poly (vinyl alcohol) hybrid nanofibre mats as active wound dressings via dual-spinneret electrospinning. RSC Adv. 2017, 7, 31310–31318. [Google Scholar] [CrossRef] [Green Version]
- Varyan, I.; Kolesnikova, N.; Xu, H.; Tyubaeva, P.; Popov, A. Biodegradability of Polyolefin-Based Compositions: Effect of Natural Rubber. Polymers 2022, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-S.; Shieh, D.-B.; Yeh, C.-S.; Wu, P.-C.; Cheng, F.-Y. Antimicrobial applications of water-dispersible magnetic nanoparticles in biomedicine. Curr. Med. 2014, 21, 3312–3322. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Yang, C.-H.; Huang, K.-S. Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly (DL-lactide-co-glycolide) microcapsules. Nanotechnology 2007, 18, 305305. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, F.C.; de Aguiar, L.C.V.; Costa, L.A.T.; Fernandes, M.T.; Marassi, R.J.; Gomes, A.D.S.; de Castro, J.A. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: Effects of the crosslinking agents. Polym. Bull. 2021, 78, 917–929. [Google Scholar] [CrossRef]
- Fei, H.; Yang, C.; Bao, H.; Wang, G. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly (vinyl alcohol)–H2SO4 porous gel electrolytes. J. Power Sour. 2014, 266, 488–495. [Google Scholar] [CrossRef]
- Xu, H.; Yamamoto, M.; Yamane, H. Melt electrospinning: Electrodynamics and spinnability. Polymer 2017, 132, 206–215. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, D.; Li, T.; Liu, X.; Song, X. Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuat. B Chem. 2021, 345, 130299. [Google Scholar] [CrossRef]
- El-Newehy, M.H.; El-Hamshary, H.; Salem, W.M. Solution blowing spinning technology towards green development of urea sensor nanofibers immobilized with hydrazone probe. Polymers 2021, 13, 531. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, K.; Yu, D.-G.; Zheng, X.; Huang, C. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv. Fiber Mater. 2022, 4, 404–435. [Google Scholar] [CrossRef]
- Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer-based nanofiber–nanoparticle hybrids and their medical applications. Polymers 2022, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yokota, T.; Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021, 13, 22. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of flexible poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, X.; Li, X. Highly sensitive humidity sensor with low-temperature cross-sensitivity based on a polyvinyl alcohol coating tapered fiber. IEEE Trans. Instrum. Meas. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Wang, J.-K.; Ying, Y.; Hu, N.; Cheng, S.-Y. Double D-shaped optical fiber temperature and humidity sensor based on ethanol and polyvinyl alcohol. Optik 2021, 242, 166972. [Google Scholar] [CrossRef]
- Noorjahan, A.; Choi, P. Thermodynamic properties of poly (vinyl alcohol) with different tacticities estimated from molecular dynamics simulation. Polymer 2013, 54, 4212–4219. [Google Scholar] [CrossRef]
- Clark, S., Jr. Handbook of Physical Constants: Boulder; The Geological Society of America: Boulder, CO, USA, 1966. [Google Scholar]
- Kikoin, I. Tables of Physical Constants; Atomizdat: Moscow, Russia, 1976; p. 974. [Google Scholar]
- Bertholds, A.; Dandliker, R. Determination of the individual strain-optic coefficients in single-mode optical fibres. J. Lightwave Technol. 1988, 6, 17–20. [Google Scholar] [CrossRef]
- Namihira, Y. Opto-elastic constant in single mode optical fibers. J. Lightwave Technol. 1985, 3, 1078–1083. [Google Scholar] [CrossRef]
- Krohn, D.A.; MacDougall, T.; Mendez, A. Fiber Optic Sensors: Fundamentals and Applications; Spie Press: Bellingham, WA, USA, 2014. [Google Scholar]
- Harris, A.; Castle, P. Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius. J. Lightwave Technol. 1986, 4, 34–40. [Google Scholar] [CrossRef]
- Marcuse, D. Influence of curvature on the losses of doubly clad fibers. Appl. Opt. 1982, 21, 4208–4213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-L.; Wen, H.-Y.; Weng, Y.-Q.; Liu, Y.-C.; Wu, C.-W.; Hsu, H.-C.; Chiang, C.-C. A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment. Polymers 2022, 14, 2110. https://doi.org/10.3390/polym14102110
Chou Y-L, Wen H-Y, Weng Y-Q, Liu Y-C, Wu C-W, Hsu H-C, Chiang C-C. A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment. Polymers. 2022; 14(10):2110. https://doi.org/10.3390/polym14102110
Chicago/Turabian StyleChou, Yen-Lung, Hsin-Yi Wen, Yu-Qiao Weng, Yi-Ching Liu, Chao-Wei Wu, Hsiang-Cheng Hsu, and Chia-Chin Chiang. 2022. "A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment" Polymers 14, no. 10: 2110. https://doi.org/10.3390/polym14102110
APA StyleChou, Y.-L., Wen, H.-Y., Weng, Y.-Q., Liu, Y.-C., Wu, C.-W., Hsu, H.-C., & Chiang, C.-C. (2022). A U-Shaped Optical Fiber Temperature Sensor Coated with Electrospinning Polyvinyl Alcohol Nanofibers: Simulation and Experiment. Polymers, 14(10), 2110. https://doi.org/10.3390/polym14102110