Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mn-Al LDH
2.3. Preparation of Composite Adhesives
2.4. Material Characterization
2.4.1. Structural Characterization
2.4.2. Characterization of Morphology
2.4.3. Adhesion Assessment
3. Results
3.1. The Microstructure of Mn-Al LDH Fillers
3.2. The XRD Analysis of Mn-Al LDH Crystal Structure
3.3. Adhesion Assessment
3.4. Microstructural Analysis
3.5. FTIR Characterization of Al Alloys, Composite Adhesives, and Interfaces
3.6. EDS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, V.; Biswas, S. Three-body abrasive wear behavior of short jute fiber reinforced epoxy composites. Polym. Compos. 2016, 37, 270–278. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Nicholson, J.W. Adhesive dental materials—A review. Int. J. Adhes. Adhes. 1998, 18, 229–236. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent. Mater. 1998, 14, 51–56. [Google Scholar] [CrossRef]
- Kang, L.; Zhou, Y.; Lan, J.; Yu, Y.; Cai, Q.; Yang, X. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration. Dent. Mater. J. 2020, 39, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Rueggberg, F.A.; Giannini, M.; Arrais, C.A.G.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.; Drzal, P.; Lingibson, S. Two-dimensional gradient platforms for rapid assessment of dental polymers: A chemical, mechanical and biological evaluation. Dent. Mater. 2007, 23, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.; Vallo, C. Effect of different photoinitiator systems on conversion profiles of a model unfilled light-cured resin. Dent. Mater. 2007, 23, 1313–1321. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lassila, L.V.J.; Vallittu, P.K. Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. J. Dent. 2006, 34, 721–726. [Google Scholar] [CrossRef]
- Ashor, A.A.; Vuksanović, M.M.; Tomić, N.Z.; Marinković, A.; Jančić Heinemann, R. The influence of alumina particle modification on the adhesion of the polyacrylate matrix composite films and the metal substrate. Compos. Interfaces 2018, 1–14. [Google Scholar] [CrossRef]
- Curtis, J.W.; Rueggeberg, F.; Lee, A.J. Curing efficiency of the Turbo Tip. Gen. Denistry 1995, 43, 428–433. [Google Scholar]
- Chaudhary, V.; Rajput, A.K.; Bajpai, P.K. Effect of Particulate Filler on Mechanical Properties of Polyester based Composites. Mater. Today Proc. 2017, 4, 9893–9897. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Huang, W.M.; Wang, C.; Hui, D.; Fu, Y.Q. Controlled evolution of surface patterns for ZnO coated on stretched PMMA upon thermal and solvent treatments. Compos. Part B Eng. 2018, 132, 1–9. [Google Scholar] [CrossRef]
- Yao, X.; Gao, X.; Jiang, J.; Xu, C.; Deng, C.; Wang, J. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos. Part B Eng. 2018, 132, 170–177. [Google Scholar] [CrossRef]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Aminoroaya, A.; Neisiany, R.E.; Khorasani, S.N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos. Part B Eng. 2021, 216, 108852. [Google Scholar] [CrossRef]
- Aminoroaya, A.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Panahi, P.; Das, O.; Ramakrishna, S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater. Sci. Eng. 2020, 6, 3713–3744. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Kitagawa, T.; Aida, M.; Nishiyama, N. Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater. 2006, 2, 633–639. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, W.; Miao, H.; Shi, W. Preparation and properties of polymer/LDH nanocomposite used for UV curing coatings. Prog. Org. Coat. 2009, 65, 450–456. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Hibino, T. Anion Selectivity of Layered Double Hydroxides: Effects of Crystallinity and Charge Density. Eur. J. Inorg. Chem. 2018, 2018, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhang, Y.; Zhang, Q.; Chen, X.; Liu, L.; Komarneni, S.; Lv, F. Novel synthesis of layered double hydroxides (LDHs) from zinc hydroxide. Appl. Surf. Sci. 2017, 396, 799–803. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhao, L.; Zhang, S.; Zhang, F.; Dong, M.; Xu, S. Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures. Materials 2010, 3, 5220–5235. [Google Scholar] [CrossRef] [PubMed]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Constantino, V.R.L.; Pinnavaia, T.J. Basic Properties of Mg2+1-xAl3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions. Inorg. Chem. 1995, 34, 883–892. [Google Scholar] [CrossRef]
- Sun, X.; Neuperger, E.; Dey, S.K. Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Part 1. Optimization and controlled synthesis of chloride-intercalated LDH. J. Colloid Interface Sci. 2015, 459, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Leroux, F.; Besse, J.-P. Polymer Interleaved Layered Double Hydroxide: A New Emerging Class of Nanocomposites. Chem. Mater. 2001, 13, 3507–3515. [Google Scholar] [CrossRef]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Algellai, A.A.; Tomić, N.; Vuksanović, M.M.; Dojčinović, M.; Volkov-Husović, T.; Radojević, V.; Heinemann, R.J. Adhesion testing of composites based on Bis-GMA/TEGDMA monomers reinforced with alumina based fillers on brass substrate. Compos. Part B Eng. 2018, 140, 164–173. [Google Scholar] [CrossRef]
- Ollendorf, H.; Schiilke, T.; Schneider, D. Testing the Adhesion of Hard Coatings Including the Non-Destructive Technique of Surface Acoustic Waves; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780429070440. [Google Scholar]
- Algellai, A.; Vuksanovic, M.; Tomic, N.; Marinkovic, A.; Dojcinovic, M.; Volkov-Husovic, T.; Jancic-Heinemann, R. Improvement of cavitation resistance of composite films using functionalized alumina particles. Hem. Ind. 2018, 205–213. [Google Scholar] [CrossRef]
- Kawano, F.; Ohguri, T.; Ichikawa, T.; Hasegawa, A. Shock absorbability and hardness of commercially available denture teeth. Int. J. Prosthodont. 2002, 15, 243–247. [Google Scholar]
- Iost, A.; Bigot, R. Hardness of coatings. Surf. Coat. Technol. 1996, 80, 117–120. [Google Scholar] [CrossRef]
- Tomić, N.Z.; Saleh, M.N.; de Freitas, S.T.; Živković, A.; Vuksanović, M.; Poulis, J.A.; Marinković, A. Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends. Polymers 2020, 12, 1541. [Google Scholar] [CrossRef]
- Kalifa, M.; Tomić, N.Z.; Algellai, A.A.; Vuksanović, M.M.; Radojević, V.; Jančić Heinemann, R.M.; Marinković, A.D. The effect of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS) on hybrid film adhesion. Int. J. Adhes. Adhes. 2020, 103, 102719. [Google Scholar] [CrossRef]
- Wei Su, L.; Lin, D.J.; Yen Uan, J. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: Fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent. Mater. 2019, 35, 663–672. [Google Scholar] [CrossRef]
- Tomić, N.Z.; Međo, B.I.; Stojanović, D.B.; Radojević, V.J.; Rakin, M.P.; Jančić-Heinemann, R.M.; Aleksić, R.R. A rapid test to measure adhesion between optical fibers and ethylene-vinyl acetate copolymer (EVA). Int. J. Adhes. Adhes. 2016, 68, 341–350. [Google Scholar] [CrossRef]
- Algellai, A.A.; Vuksanović, M.M.; Tomić, N.Z.; Marinković, A.D.; Obradović–Đuričić, K.D.; Radojević, V.J.; Jančić Heinemann, R.M. The implementation of image analysis for the visualization of adhesion assessment of a composite film. Mater. Lett. 2018, 227. [Google Scholar] [CrossRef]
- Chen, M.; Gao, J. The adhesion of copper films coated on silicon and glass substrates. Mod. Phys. Lett. B 2000, 14, 103–108. [Google Scholar] [CrossRef]
- He, J.L.; Li, W.Z.; Li, H.D. Hardness measurement of thin films: Separation from composite hardness. Appl. Phys. Lett. 1996, 69, 1402–1404. [Google Scholar] [CrossRef]
- Magagnin, L.; Maboudian, R.; Carraro, C. Adhesion evaluation of immersion plating copper films on silicon by microindentation measurements. Thin Solid Films 2003, 434, 100–105. [Google Scholar] [CrossRef]
- Apte, S.K.; Naik, S.D.; Sonawane, R.S.; Kale, B.B.; Pavaskar, N.; Mandale, A.B.; Das, B.K. Nanosize Mn3O4 (Hausmannite) by microwave irradiation method. Mater. Res. Bull. 2006, 41, 647–654. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Wang, C.; Wang, H. Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 538, 443–450. [Google Scholar] [CrossRef]
- Garcês Gonçalves, P.R.; De Abreu, H.A.; Duarte, H.A. Stability, Structural, and Electronic Properties of Hausmannite (Mn3O4) Surfaces and Their Interaction with Water. J. Phys. Chem. C 2018, 122, 20841–20849. [Google Scholar] [CrossRef]
- Denis, A.B.; Diagone, C.A.; Plepis, A.M.G.; Viana, R.B. Kinetic Parameters during Bis-GMA and TEGDMA Monomer Polymerization by ATR-FTIR: The Influence of Photoinitiator and Light Curing Source. J. Spectrosc. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
Si (%) | Fe (%) | Mg (%) | Al (%) |
---|---|---|---|
0.11 | 1.0 | 0.001 | 98.8 |
Si (%) | Fe (%) | Cu (%) | Mn (%) | Mg (%) | Cr (%) | Zn (%) | Ti (%) | Pb (%) | Al (%) |
---|---|---|---|---|---|---|---|---|---|
0.19 | 0.6 | 0.11 | 1.2 | 0.55 | 0.01 | 0.02 | 0.03 | 0.002 | 97.288 |
Mean (nm) | Minimum (nm) | Maximum (nm) | Standard Deviation (nm) | Variance (nm) |
---|---|---|---|---|
28.39 | 12.51 | 74.32 | 13.25 | 175.53 |
Sample | Dmax (µm) | Dmin (µm) | Dmean (µm) | Standard Deviation (µm) |
---|---|---|---|---|
L3005/BT+1 wt.% Mn-Al LDH | 14.18 | 1.86 | 5.34 | 2.58 |
L3005/BT+3 wt.% Mn-Al LDH | 26.94 | 2.79 | 9.71 | 5.83 |
L3005/BT+5 wt.% Mn-Al LDH | 38.80 | 4.24 | 10.41 | 6.90 |
L8079/BT+1 wt.% Mn-Al LDH | 48.94 | 4.52 | 16.87 | 11.83 |
L8079/BT+3 wt.% Mn-Al LDH | 96.99 | 5.12 | 18.08 | 18.88 |
L8079/BT+5 wt.% Mn-Al LDH | 56.42 | 5.73 | 26.13 | 10.93 |
Sample/Elements | C (%) | O (%) | Al (%) | Mn (%) | Fe (%) |
---|---|---|---|---|---|
L3005 interface with BT, 200× | - | 3.17 | 95.36 | 1.01 | 0.45 |
L3005 interface with BT+5 wt. % Mn-Al LDH, 200× | - | 3.28 | 95.23 | 1.04 | 0.46 |
L3005 interface with BT+5 wt. % Mn-Al LDH, 50 k× | 10.4 | 16.4 | 61.82 | 10.5 | 0.78 |
L8079 interface with BT, 200× | - | 1.83 | 97.12 | - | 1.02 |
L8079 interface with BT+5 wt. % Mn-Al LDH, 200× | - | 1.76 | 97.26 | - | 0.99 |
L8079 interface with BT+5 wt. % Mn-Al LDH, 50 k× | 14.8 | 14.6 | 64.02 | 5.75 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomić, N.Z.; Saleh, M.N.; Vuksanović, M.M.; Egelja, A.; Obradović, V.; Marinković, A.; Jančić Heinemann, R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. Polymers 2021, 13, 1525. https://doi.org/10.3390/polym13091525
Tomić NZ, Saleh MN, Vuksanović MM, Egelja A, Obradović V, Marinković A, Jančić Heinemann R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. Polymers. 2021; 13(9):1525. https://doi.org/10.3390/polym13091525
Chicago/Turabian StyleTomić, Natasa Z., Mohamed Nasr Saleh, Marija M. Vuksanović, Adela Egelja, Vera Obradović, Aleksandar Marinković, and Radmila Jančić Heinemann. 2021. "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH" Polymers 13, no. 9: 1525. https://doi.org/10.3390/polym13091525