Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.2.1. Dense Membranes
2.2.2. Cross-Linking of the Membranes
2.2.3. Supported Membranes
2.2.4. Modification with Layer-by-Layer (Lbl) Technique
2.3. Pervaporation
2.4. Membrane Characterization
3. Results
3.1. Pervaporation Using Dense Membranes
3.1.1. Study of the Untreated Membranes
3.1.2. Study of Cross-Linked Membranes
3.2. Investigation of Dense Membranes
3.2.1. Study of Structural Characteristics
3.2.2. Study of Physicochemical Properties
3.3. Study of Transport and Structural Properties of the Cross-Linked Supported Membranes
3.3.1. Study of the Cross-Linked Supported Membranes
3.3.2. Study of the Cross-Linked Supported Membranes with Surface Modification
3.4. Comparison of the Performance of the Developed Membranes with the Membranes Described in the Literature
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipnizki, F.; Field, R.W.; Ten, P.-K. Pervaporation-based hybrid process: A review of process design, applications and economics. J. Membr. Sci. 1999, 153, 183–210. [Google Scholar] [CrossRef]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Bolto, B.; Hoang, M.; Xie, Z. Chemical Engineering and Processing: Process Intensification A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem. Eng. Process. Process. Intensif. 2011, 50, 227–235. [Google Scholar] [CrossRef]
- Horsley, L.H.; Gould, R.F. Azeotropic Data-III; Advances in Chemistry Series 116; American Chemical Society: Washington, DC, USA, 1973; p. 18. [Google Scholar]
- Keyser, J.W.; Sanders, P.G. Isopropyl alcohol as a substitute for ethyl alcohol in certain biochemical tests. Lancet 1953, 261, 422–423. [Google Scholar] [CrossRef]
- Naidu, B.V.K.; Aminabhavi, T.M. Pervaporation Separation of Water/2-Propanol Mixtures by Use of the Blend Membranes of Sodium Alginate and (Hydroxyethyl)cellulose: Roles of Permeate−Membrane Interactions, Zeolite Filling, and Membrane Swelling. Ind. Eng. Chem. Res. 2005, 44, 7481–7489. [Google Scholar] [CrossRef]
- Fu, E.; McCue, K.; Boesenberg, D. Chemical Disinfection of Hard Surfaces—Household, Industrial and Institutional Settings. In Handbook for Cleaning/Decontamination of Surfaces; Elsevier: Amsterdam, The Netherlands, 2007; pp. 573–592. [Google Scholar]
- Mlcak, R.P.; Hegde, S.D.; Herndon, D.N. Respiratory care. In Total Burn Care; Elsevier: Amsterdam, The Netherlands, 2012; pp. 239–248.e2. [Google Scholar]
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; The Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Slaughter, R.J.; Mason, R.W.; Beasley, D.M.G.; Vale, J.A.; Schep, L.J. Isopropanol poisoning. Clin. Toxicol. 2014, 52, 470–478. [Google Scholar] [CrossRef]
- Mujiburohman, M.; Sediawan, W.B.; Sulistyo, H. A preliminary study: Distillation of isopropanol–water mixture using fixed adsorptive distillation method. Sep. Purif. Technol. 2006, 48, 85–92. [Google Scholar] [CrossRef]
- Chapman, P.D.; Oliveira, T.; Livingston, A.G.; Li, K. Membranes for the dehydration of solvents by pervaporation. J. Membr. Sci. 2008, 318, 5–37. [Google Scholar] [CrossRef]
- Guimon, C.; Elharfi, A. Plasma-modified poly (vinyl alcohol) membranes for the dehydration of ethanol. Polym. Int. 2003, 1229, 1222–1229. [Google Scholar]
- Gimenes, M.L.; Liu, L.; Feng, X. Sericin/poly (vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. J. Membr. Sci. 2007, 295, 71–79. [Google Scholar] [CrossRef]
- Chan, W.-H.; Ng, C.-F.; Lam-Leung, S.-Y.; He, X.; Cheung, O.-C. Water-alcohol separation by pervaporation through poly(amide-sulfonamide)s (PASAs) membranes. J. Appl. Polym. Sci. 1997, 65, 1113–1119. [Google Scholar] [CrossRef]
- Lee, K.-R.; Chen, R.-Y.; Lai, J.-Y. Plasma deposition of vinyl acetate onto Nylon-4 membrane for pervaporation and evapomeation separation of aqueous alcohol mixtures. J. Membr. Sci. 1992, 75, 171–180. [Google Scholar] [CrossRef]
- Qiao, X.; Chung, T.-S. Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol. AIChE J. 2006, 52, 3462–3472. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Li, J. Experimental study on physical properties and pervaporation performances of polyimide membranes. Chem. Eng. Sci. 2007, 62, 2466–2473. [Google Scholar] [CrossRef]
- Li, C.-L.; Lee, K.-R. Dehydration of ethanol/water mixtures by pervaporation using soluble polyimide membranes. Polym. Int. 2006, 55, 505–512. [Google Scholar] [CrossRef]
- Hsu, C.; Liou, R.M.; Chen, S.; Hung, M.; Tsia, H.; Lai, J. Pervaporation Separation of a Water-Ethanol Mixture by PSF-PEG Membrane. J. Appl. Polym. Sci. 2003, 87, 2158–2164. [Google Scholar] [CrossRef]
- Chen, S.; Yu, K.; Lin, S.; Chang, D.; Liou, R.M. Pervaporation separation of water/ethanol mixture by sulfonated polysulfone membrane. J. Membr. Sci. 2001, 183, 29–36. [Google Scholar] [CrossRef]
- Hung, M.-Y.; Chen, S.-H.; Liou, R.-M.; Hsu, C.-S.; Lai, J.-Y. Pervaporation separation of a water/ethanol mixture by a sodium sulfonate polysulfone membrane. J. Appl. Polym. Sci. 2003, 90, 3374–3383. [Google Scholar] [CrossRef]
- Chiang, W.-Y.; Lin, Y.-H. Properties of modified polyacrylonitrile membranes prepared by copolymerization with hydrophilic monomers for water-ethanol mixture separation. J. Appl. Polym. Sci. 2003, 90, 244–250. [Google Scholar] [CrossRef]
- Vijayakumarnaidu, B.; Sairam, M.; Raju, K.; Aminabhavi, T. Pervaporation separation of water+isopropanol mixtures using novel nanocomposite membranes of poly(vinyl alcohol) and polyaniline. J. Membr. Sci. 2005, 260, 142–155. [Google Scholar] [CrossRef]
- Rao, K.S.V.K.; Subha, M.C.S.; Sairam, M.; Mallikarjuna, N.N.; Aminabhavi, T.M. Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran. J. Appl. Polym. Sci. 2007, 103, 1918–1926. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Fang, Y.; Wang, X. Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance. J. Membr. Sci. 2007, 295, 130–138. [Google Scholar] [CrossRef]
- Ge, J.; Cui, Y.; Yan, Y.; Jiang, W. The effect of structure on pervaporation of chitosan membrane. J. Membr. Sci. 2000, 165, 75–81. [Google Scholar] [CrossRef]
- Ong, Y.K.; Wang, H.; Chung, T. A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation. Chem. Eng. Sci. 2012, 79, 41–53. [Google Scholar] [CrossRef]
- Chung, T.; Fen, W.; Liu, Y. Enhanced Matrimid membranes for pervaporation by homogenous blends with polybenzimidazole (PBI). J. Membr. Sci. 2006, 271, 221–231. [Google Scholar] [CrossRef]
- Saraswathi, M.; Rao, K.M.; Prabhakar, M.N.; Prasad, C.V.; Sudakar, K.; Kumar, H.M.P.N.; Prasad, M.; Rao, K.C.; Subha, M.C.S. Pervaporation studies of sodium alginate (SA)/dextrin blend membranes for separation of water and isopropanol mixture. Desalination 2011, 269, 177–183. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Zhang, L.; Shen, J.N.; Song, M.Y.; Chen, H.L. Preparation of poly (vinyl alcohol) -sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. J. Membr. Sci. 2006, 193, 202–210. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, F.; Wang, M.; Li, W.; Song, Y.; Liu, G.; Yang, H.; Gao, B.; Wu, H.; Jiang, Z. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Hu, W.W.; Zhu, A.M.; Liu, Q.L. UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation. RSC Adv. 2013, 3, 1855–1861. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F.J. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Thu, H.E.; Ng, S.F. Gelatine enhances drug dispersion in alginate bilayer film via the formation of crystalline microaggregates. Int. J. Pharm. 2013, 454, 99–106. [Google Scholar] [CrossRef]
- Kosik, A.; Luchowska, U.; Święszkowski, W. Electrolyte alginate/poly-l-lysine membranes for connective tissue development. Mater. Lett. 2016, 184, 104–107. [Google Scholar] [CrossRef]
- By, E.; Venkatesan, J.; Anil, S.; Kim, S.; Corporation, X.; States, U. Chemical Modification of Alginate—Seaweed Polysaccharides; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128098165. [Google Scholar]
- Munavalli, B.; Torvi, A.; Kariduraganavar, M. A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 2018, 142, 293–309. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Lee, K.H. Vapor permeation separation of methanol-water mixtures: Effect of experimental conditions. Ind. Eng. Chem. Res. 2013, 52, 10450–10459. [Google Scholar] [CrossRef]
- Kahya, S.; Şanli, O. Separation of dimethylformamide/water mixtures through sodium alginate and sodium alginate/clinoptilolite composite membranes by vapor permeation with and without feed-membrane temperature difference. Desalin. Water Treat. 2014, 52, 3517–3525. [Google Scholar] [CrossRef]
- Dudek, G.; Gnus, M.; Turczyn, R.; Konieczny, K. The study of ethanol and water vapour permeation process through alginate membranes modified by magnetic powders. Desalin. Water Treat. 2017, 64, 339–344. [Google Scholar] [CrossRef]
- Zhao, F.Y.; An, Q.F.; Ji, Y.L.; Gao, C.J. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening. J. Membr. Sci. 2015, 492, 412–421. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Kim, S.J.; Lee, K.H. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration. Sep. Purif. Technol. 2014, 137, 21–27. [Google Scholar] [CrossRef]
- Yakoumis, I.; Theodorakopoulos, G.; Papageorgiou, S.K.; Romanos, G.; Veziri, C.; Panias, D. Tubular C/Cu decorated γ-alumina membranes for NO abatement. J. Membr. Sci. 2016, 515, 134–143. [Google Scholar] [CrossRef]
- Kuila, S.B.; Ray, S.K. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate. Carbohydr. Polym. 2014, 101, 1154–1165. [Google Scholar] [CrossRef]
- Moulik, S.; Nazia, S.; Vani, B.; Sridhar, S. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane. Sep. Purif. Technol. 2016, 170, 30–39. [Google Scholar] [CrossRef]
- Hosseini, S.; Charkhi, A.; Minuchehr, A.; Ahmadi, S.J. Dehydration of acetonitrile using cross-linked sodium alginate membrane containing nano-sized NaA zeolite. Chem. Pap. 2017, 71, 1143–1153. [Google Scholar] [CrossRef]
- Xing, R.; Pan, F.; Zhao, J.; Cao, K.; Gao, C.; Yang, S.; Liu, G.; Wu, H.; Jiang, Z. Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Adv. 2016, 6, 14381–14392. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, Z.; Cheng, X.; Yang, H.; Tang, L.; Liu, G.; Wang, M.; Wu, H.; Pan, F.; Cao, X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J. Membr. Sci. 2018, 555, 146–156. [Google Scholar] [CrossRef]
- Kalyani, S.; Smitha, B.; Sridhar, S.; Krishnaiah, A. Blend membranes of sodium alginate and hydroxyethylcellulose for pervaporation-based enrichment of t-butyl alcohol. Carbohydr. Polym. 2006, 64, 425–432. [Google Scholar] [CrossRef]
- Chanachai, A.; Jiraratananon, R.; Uttapap, D.; Moon, G.; Anderson, W.; Huang, R.Y. Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes. J. Membr. Sci. 2000, 166, 271–280. [Google Scholar] [CrossRef]
- Das, P.; Ray, S.K. Synthesis and characterization of biopolymer based mixed matrix membranes for pervaporative dehydration. Carbohydr. Polym. 2014, 103, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Unlu, D.; Durmaz Hilmioglu, N. Synthesis of Ethyl Levulinate as a Fuel Bioadditive by a Novel Catalytically Active Pervaporation Membrane. Energy Fuels 2016, 30, 2997–3003. [Google Scholar] [CrossRef]
- Unlu, D.; Ilgen, O.; Durmaz Hilmioglu, N. Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate. Chem. Eng. Res. Des. 2017, 118, 248–258. [Google Scholar] [CrossRef]
- Unlu, D.; Durmaz Hilmioglu, N. Applicability of a TSA/ZrO2 catalytic membrane for the production of ethyl levulinate as raw material of gamma-valerolactone. Int. J. Hydrogen Energy 2017, 42, 21487–21494. [Google Scholar] [CrossRef]
- Kumarnaidu, B.; Sairam, M.; Raju, K.; Aminabhavi, T. Thermal, viscoelastic, solution and membrane properties of sodium alginate/hydroxyethylcellulose blends. Carbohydr. Polym. 2005, 61, 52–60. [Google Scholar] [CrossRef]
- Mali, M.G.; Gokavi, G.S. High performance organic/inorganic hybrid mixed matrix blend membranes of chitosan and hydroxyethyl cellulose for pervaporation separation of ethanol–water mixtures. AIP Conf. Proc. 2018, 020027. [Google Scholar]
- Penkova, A.V.; Acquah, S.F.A.; Dmitrenko, M.E.; Chen, B.; Semenov, K.N.; Kroto, H.W. Transport properties of cross-linked fullerenol–PVA membranes. Carbon 2014, 76, 446–450. [Google Scholar] [CrossRef]
- Penkova, A.V.; Acquah, S.F.A.; Sokolova, M.P.; Dmitrenko, M.E.; Toikka, A.M. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C60(OH)12. J. Membr. Sci. 2015, 491, 22–27. [Google Scholar] [CrossRef]
- Penkova, A.V.; Dmitrenko, M.E.; Savon, N.A.; Missyul, A.B.; Mazur, A.S.; Kuzminova, A.I.; Zolotarev, A.A.; Mikhailovskii, V.; Lahderanta, E.; Markelov, D.A.; et al. Novel mixed-matrix membranes based on polyvinyl alcohol modified by carboxyfullerene for pervaporation dehydration. Sep. Purif. Technol. 2018, 204, 1–12. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Atta, R.R.; Zolotarev, A.A.; Mazur, A.S.; Vezo, O.S.; Lahderanta, E.; Markelov, D.A.; Ermakov, S.S. Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Sep. Purif. Technol. 2019, 226, 241–251. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Kuzminova, A.; Mazur, A.; Lahderanta, E.; Ermakov, S.; Penkova, A. Novel Mixed Matrix Sodium Alginate–Fullerenol Membranes: Development, Characterization, and Study in Pervaporation Dehydration of Isopropanol. Polymers 2020, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Ansaloni, L.; Deng, L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 2016, 1, 102–128. [Google Scholar] [CrossRef] [Green Version]
- Sulzer Chemtech. Membrane Technology; Sulzer Chemtech: Winterthur, Switzerland, 2006. [Google Scholar]
- Yave, W. The improved pervaporation PERVAP membranes. Filtr. Sep. 2017, 54, 14–15. [Google Scholar] [CrossRef]
- Liang, C.Z.; Chung, T.-S.; Lai, J.-Y. A review of polymeric composite membranes for gas separation and energy production. Prog. Polym. Sci. 2019, 97, 101141. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Ermakov, S.; Roizard, D.; Penkova, A. Enhanced Pervaporation Properties of PVA-Based Membranes Modified with Polyelectrolytes. Application to IPA Dehydration. Polymers 2019, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Morshed, M.; Larionov, M.I.; Alem, H.; Zolotarev, A.A.; Ermakov, S.S.; Roizard, D. Investigation of new modification strategies for PVA membranes to improve their dehydration properties by pervaporation. Appl. Surf. Sci. 2018, 450, 527–537. [Google Scholar] [CrossRef]
- Joseph, N.; Ahmadiannamini, P.; Hoogenboom, R.; Vankelecom, I.F.J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym. Chem. 2014, 5, 1817–1831. [Google Scholar] [CrossRef]
- Krasemann, L.; Toutianoush, A.; Tieke, B. Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures. J. Membr. Sci. 2001, 181, 221–228. [Google Scholar] [CrossRef]
- Klitzing, R.; Tieke, B. Polyelectrolyte Membranes; Springer: Berlin/Heidelberg, Germany, 2004; pp. 177–210. [Google Scholar]
- Krasemann, L.; Tieke, B. Ultrathin self-assembled polyelectrolyte membranes for pervaporation. J. Membr. Sci. 1998, 150, 23–30. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Penkova, A.; Kuzminova, A.; Missyul, A.; Ermakov, S.; Roizard, D. Development and characterization of new pervaporation PVA membranes for the dehydration using bulk and surface modifications. Polymers 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Dudek, G.; Gnus, M.; Strzelewicz, A.; Turczyn, R.; Krasowska, M. The influence of metal oxides on the separation properties of hybrid alginate membranes. Sep. Sci. Technol. 2018, 53, 1178–1190. [Google Scholar] [CrossRef]
- Dudek, G.; Turczyn, R.; Gnus, M.; Konieczny, K. Pervaporative dehydration of ethanol/water mixture through hybrid alginate membranes with ferroferic oxide nanoparticles. Sep. Purif. Technol. 2018, 193, 398–407. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Lahderanta, E.; Ermakov, S.; Penkova, A. Mixed matrix membranes based on sodium alginate modified by fullerene derivatives with L-amino acids for pervaporation isopropanol dehydration. J. Mater. Sci. 2021, 56, 7765–7787. [Google Scholar] [CrossRef]
- Dudek, G.; Krasowska, M.; Turczyn, R.; Gnus, M.; Strzelewicz, A. Structure, morphology and separation efficiency of hybrid Alg/Fe3O4 membranes in pervaporative dehydration of ethanol. Sep. Purif. Technol. 2017, 182, 101–109. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Jyoti, G.; Keshav, A.; Anandkumar, J. Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. J. Eng. 2015, 2015, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sampranpiboon, P.; Jiraratananon, R.; Uttapap, D.; Feng, X.; Huang, R.Y. Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes. J. Membr. Sci. 2000, 173, 53–59. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Xie, H.R.; Ji, C.H.; Xue, S.M.; Xu, Z.L.; Yang, H.; Ma, X.H. Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration. Sep. Purif. Technol. 2018, 206, 218–225. [Google Scholar] [CrossRef]
- Daemi, H.; Barikani, M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Jiang, Z.; Cao, K.; Nair, S.; Cheng, X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. Membr. Sci. 2017, 523, 185–196. [Google Scholar] [CrossRef]
- El Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; Zhang, L.; He, C.; Mo, X.; Wang, H. Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Appl. Biochem. Biotechnol. 2020, 191, 1624–1637. [Google Scholar] [CrossRef]
- Das, D.; Prakash, P.; Rout, P.K.; Bhaladhare, S. Synthesis and Characterization of Superabsorbent Cellulose-Based Hydrogel for Agriculture Application. Starch Stärke 2020, 73, 1900284. [Google Scholar] [CrossRef]
- Sajjan, A.M.; Jeevan Kumar, B.K.; Kittur, A.A.; Kariduraganavar, M.Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. J. Membr. Sci. 2013, 425–426, 77–88. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Pan, F.; Li, Z.; Ding, H.; Liu, G.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. J. Membr. Sci. 2016, 520, 583–595. [Google Scholar] [CrossRef]
- Wai, K.P.; Koo, C.H.; Pang, Y.L.; Chong, W.C.; Lau, W.J. In situ immobilization of silver on polydopamine-coated composite membrane for enhanced antibacterial properties. J. Water Process Eng. 2020, 33, 100989. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, S.; Che, Q. Preparation and characterization of layer-by-layer self-assembly membrane based on sulfonated polyetheretherketone and polyurethane for high-temperature proton exchange membrane. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3446–3454. [Google Scholar] [CrossRef]
- Lefaux, C.J.; Kim, B.-S.; Venkat, N.; Mather, P.T. Molecular Composite Coatings on Nafion Using Layer-by-Layer Self-Assembly. ACS Appl. Mater. Interfaces 2015, 7, 10365–10373. [Google Scholar] [CrossRef]
- Li, J.; Si, X.; Li, X.; Wang, N.; An, Q.; Ji, S. Preparation of acid-resistant PEI/SA composite membranes for the pervaporation dehydration of ethanol at low pH. Sep. Purif. Technol. 2018, 192, 205–212. [Google Scholar] [CrossRef]
- Tieke, B.; van Ackern, F.; Krasemann, L.; Toutianoush, A. Ultrathin self-assembled polyelectrolyte multilayer membranes. Eur. Phys. J. E 2001, 5, 29–39. [Google Scholar] [CrossRef]
- Sajjan, A.M.; Premakshi, H.G.; Kariduraganavar, M.Y. Synthesis and characterization of polyelectrolyte complex membranes for the pervaporation separation of water–isopropanol mixtures using sodium alginate and gelatin. Polym. Bull. 2018, 75, 851–875. [Google Scholar] [CrossRef]
- Adoor, S.G.; Rajineekanth, V.; Nadagouda, M.N.; Chowdoji Rao, K.; Dionysiou, D.D.; Aminabhavi, T.M. Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous-organic mixtures by pervaporation. Sep. Purif. Technol. 2013, 113, 64–74. [Google Scholar] [CrossRef]
- RajiniKanth, V.; Ravindra, S.; Madalageri, P.M.; Kajjari, P.B.; Mulaba-Bafubiandi, A.F. Study of enhanced physical and pervaporation properties in composite membrane. Membr. Water Treat. 2017, 8, 483–498. [Google Scholar]
- Toti, U.S.; Aminabhavi, T.M. Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures. J. Membr. Sci. 2004, 228, 199–208. [Google Scholar] [CrossRef]
- Maruthi, Y.; Kumara Babu, P.; Subha, M.C.S.; Chowdoji Rao, K. Phosphotungstic acid loaded mixed matrix membranes of sodium alginate karayagum for dehydration of aqueous-organic mixtures. Indian J. Chem. Technol. 2018, 25, 459–467. [Google Scholar]
- Toti, U.S.; Aminabhavi, T.M. Pervaporation separation of water-isopropyl alcohol mixtures with blend membranes of sodium alginate and poly(acrylamide)-grafted guar gum. J. Appl. Polym. Sci. 2002, 85, 2014–2024. [Google Scholar] [CrossRef]
- Rachipudi, P.S.; Kittur, A.A.; Sajjan, A.M.; Kamble, R.R.; Kariduraganavar, M.Y. Solving the trade-off phenomenon in separation of water-dioxan mixtures by pervaporation through crosslinked sodium-alginate membranes with polystyrene sulfonic acid-co-maleic acid. Chem. Eng. Sci. 2013, 94, 84–92. [Google Scholar] [CrossRef]
- Mali, M.G.; Gokavi, G.S. Sorption and permeation studies for isopropanol + water mixtures using alginate based highly water selective nanocomposite membranes. J. Polym. Res. 2012, 19, 9976. [Google Scholar] [CrossRef]
- Patil, M.B.; Veerapur, R.S.; Patil, S.A.; Madhusoodana, C.D.; Aminabhavi, T.M. Preparation and characterization of filled matrix membranes of sodium alginate incorporated with aluminum-containing mesoporous silica for pervaporation dehydration of alcohols. Sep. Purif. Technol. 2007, 54, 34–43. [Google Scholar] [CrossRef]
Substance | Mr, g/mol | Solubility in Water, g/100mL | Melting Temperature, °C | Density, g/cm3 |
---|---|---|---|---|
Citric acid | 192.1 | 133.0 | 153 | 1.665 |
Phosphoric acid | 98.0 | 548.0 | 42 | 1.685 |
Calcium chloride | 111.1 | 74.5 | 772 | 2.15 |
Isopropanol | 60.1 | - | −90 | 0.7851 |
Membrane | Type | Thickness, μm | Content of C60(OH)22–24, wt.% | Cross-Linking Method |
---|---|---|---|---|
HEC/SA | dense | 30 | 0 | - |
HEC/SA-5 | dense | 30 | 5 | - |
HEC/SACA | dense | 30 | 0 | 3.5 wt.% citric acid |
HEC/SAPA | dense | 30 | 0 | 3.5 vol.% phosphoric acid |
HEC/SACaCl2 | dense | 30 | 0 | 1.25 wt.% calcium chloride |
HEC/SA-5CaCl2 | dense | 30 | 5 | 1.25 wt.% calcium chloride |
HEC/SA/PANCaCl2 | supported | 1 | 0 | 1.25 wt.% calcium chloride |
HEC/SA-5/PANCaCl2 | supported | 1 | 5 | 1.25 wt.% calcium chloride |
Membrane | Permeation Flux, kg/(m2h) | Water Content in the Permeate, wt.% |
---|---|---|
HEC/SA | 0.122 | 99.99 |
HEC/SA-5 | 0.143 | 99.99 |
Membranes | Ra, nm | Rq, nm |
---|---|---|
HEC/SA (10/90) | 9.3 | 13.7 |
HEC/SA (30/70) | 17.0 | 24.9 |
HEC/SA (50/50) | 10.6 | 15.7 |
HEC/SA-5 | 32.9 | 46.1 |
HEC/SACA | 23.2 | 29.6 |
HEC/SAPA | 18.5 | 23.9 |
HEC/SACaCl2 | 50.4 | 63.0 |
HEC/SA-5CaCl2 | 65.2 | 81.8 |
Membranes | Swelling Degree, % | Contact Angle of Water, ° | |
---|---|---|---|
Water | Azeotropic Water-Isopropanol (12/88 wt.%) Mixture | ||
HEC/SA | - | 20 | - |
HEC/SA-5 | - | 23 | - |
HEC/SACaCl2 | 207 | 26 | 35 ± 2 |
HEC/SACA | 179 | 22 | 72 ± 3 |
HEC/SAPA | 124 | 24 | 76 ± 4 |
HEC/SA-5CaCl2 | 154 | 18 | 30 ± 3 |
Membranes | Ra, nm | Rq, nm | Contact Angle of Water, ° |
---|---|---|---|
HEC/SA/PANCaCl2 | 10.1 | 13.6 | 43 ± 3 |
HEC/SA-5/PANCaCl2 | 18.7 | 25.4 | 41 ± 2 |
Membranes | Ra, nm | Rq, nm | Contact Angle of Water, ° | |
---|---|---|---|---|
Before PV | After PV | |||
HEC/SA-5/PANCaCl2—LblPSS,PAH | 23.9 | 30.5 | 66 ± 4 | 68 ± 5 |
HEC/SA-5/PANCaCl2—LblPSS,SA | 22.2 | 30.3 | 65 ± 3 | 66 ± 4 |
Membranes | Water Content in the Feed, wt.% | Temperature, °C | Permeation Flux, kg/(m2h) | Separation Factor (β) | Reference |
---|---|---|---|---|---|
HEC/SA-5/PANCaCl2 | 12 | 22 | 0.420 | 73,326 | This study |
HEC/SA (10/90)-ZSM-5(40) (10%)GA + UFS * | 12.5 | 30 | 0.22 | 14,000 | [6] |
HEC/SA (10/90) GA + UFS * | 12.5 | 30 | 0.09 | 14,000 | |
SA-chitosan-wrapped MWCNT (2%) | 10 | 30 | 0.218 | 6419 | [88] |
SA-gelatin (10%) | 10 | 30 | 0.085 | 4277 | [95] |
SA-phosphotungstic acid modified by ammonium carbonate (10%) | 10 | 30 | 0.316 | 8991 | [96] |
SA-phosphomolybdic acid (10%) | 10 | 30 | 0.282 | 9028 | [97] |
HEC/SA-5/PANCaCl2 | 30 | 22 | 1.212 | 50 | This study |
SA-PVA (5%) | 30 | 30 | 0.226 | 49.5 | [98] |
SA-karayagum (15%) | 30 | 30 | 0.486 | 1613 | [99] |
SA/poly(acrylamide)-grafted guar gum (75/25) | 30 | 30 | 0.164 | 153 | [100] |
SA–polystyrene sulfonic acid-co-maleic acid | 30 | 30 | ~0.223 | ~1800 | [101] |
SA–heteropolyacids (10%) | 30 | 30 | ~0.263 | ~1200 | [102] |
SA-aluminum-containing mesoporous silica (20%) | 30 | 30 | 0.256 | ∞ | [103] |
Membranes | Water Content in the Feed, wt.% | Tem-re, °C | Permeation Flux, kg/(m2h) | Separation Factor (β) | Reference |
---|---|---|---|---|---|
HEC/SA-5/PANCaCl2—LblPSS,PAH | 30 | 22 | 1.876 | 9 | This study |
HEC/SA-5/PANCaCl2—LblPSS,SA | 30 | 22 | 1.264 | 21 | This study |
PVA–PAH (4.7%)/PAN—LblPSS,PAH (10 bilayers) | 20 | 20 | 0.061 | 3996 | [68] |
PVA–PAH (4.7%)/UPM—LblPSS,PAH (10 bilayers) | 20 | 20 | 0.261 | 9 | |
PVA-fullerenol(5%)-PAH (4.7%)/UPM—LblPSS,PAH (10 bilayers) | 20 | 22 | 0.286 | 246 | [69] |
PVA-fullerenol (5%)-CS (20%)/UPM—LblPSS,CS (5 bilayers) | 20 | 22 | 0.340 | 87 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, M.; Zolotarev, A.; Liamin, V.; Kuzminova, A.; Mazur, A.; Semenov, K.; Ermakov, S.; Penkova, A. Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers 2021, 13, 674. https://doi.org/10.3390/polym13050674
Dmitrenko M, Zolotarev A, Liamin V, Kuzminova A, Mazur A, Semenov K, Ermakov S, Penkova A. Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers. 2021; 13(5):674. https://doi.org/10.3390/polym13050674
Chicago/Turabian StyleDmitrenko, Mariia, Andrey Zolotarev, Vladislav Liamin, Anna Kuzminova, Anton Mazur, Konstantin Semenov, Sergey Ermakov, and Anastasia Penkova. 2021. "Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol" Polymers 13, no. 5: 674. https://doi.org/10.3390/polym13050674
APA StyleDmitrenko, M., Zolotarev, A., Liamin, V., Kuzminova, A., Mazur, A., Semenov, K., Ermakov, S., & Penkova, A. (2021). Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers, 13(5), 674. https://doi.org/10.3390/polym13050674