Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of Scaffolds
2.3. Scaffold Characterization
2.3.1. Hydrogel Characterization
Rheological Evaluation
Morphological Evaluation
2.3.2. Aerogel Characterization
Rheological Evaluation
Morphological Evaluation
Crosslinking Degree
Swelling Degree
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hydrogels vs. Aerogels at Different Collagen Concentrations
3.2. Evaluation of Fructose as Crosslinking Agent
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, I.; Wendt, D.; Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004, 22, 80–86. [Google Scholar] [CrossRef]
- Cunniffe, G.M.; O’Brien, F.J. Collagen scaffolds for orthopedic regenerative medicine. JOM 2011, 63, 66–73. [Google Scholar] [CrossRef]
- Vacanti, J.P.; Langer, R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999, 354, S32–S34. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers 2020, 12, 1566. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Vareda, J.P.; Lamy-Mendes, A.; Durães, L. A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater. 2018, 258, 211–216. [Google Scholar] [CrossRef]
- Perez-Puyana, V.M.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Highly porous protein-based 3D scaffolds with different collagen concentrates for potential application in tissue engineering. J. Appl. Polym. Sci. 2019, 136, 47954. [Google Scholar] [CrossRef]
- Gentile, F. Cell aggregation on nanorough surfaces. J. Biomech. 2021, 115, 110134. [Google Scholar] [CrossRef]
- Chandika, P.; Heo, S.-Y.; Kim, T.-H.; Oh, G.-W.; Kim, G.-H.; Kim, M.-S.; Jung, W.-K. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int. J. Biol. Macromol. 2020, 164, 2329–2357. [Google Scholar] [CrossRef] [PubMed]
- Sell, S.A.; Wolfe, P.S.; Garg, K.; McCool, J.M.; Rodriguez, I.A.; Bowlin, G.L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2, 522–553. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [Green Version]
- Wise, S.G.; Byrom, M.J.; Waterhouse, A.; Bannon, P.G.; Ng, M.K.; Weiss, A.S. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 2011, 7, 295–303. [Google Scholar] [CrossRef]
- Tolba, E. Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. Regen. Eng. Transl. Med. 2020, 6, 383–397. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Puyana, V.; Ostos, F.J.; López-Cornejo, P.; Romero, A.; Guerrero, A. Assessment of the denaturation of collagen protein concentrates using different techniques. Biol. Chem. 2019, 400, 1583–1591. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Zweifel, H.; Maier, R.D.; Schiller, M. Plastics Additives Handbook, 6th ed.; Hanser Publishers: Munich, Germany, 2009. [Google Scholar]
- Sempere-Alemany, F.J. Study of Processes Reticulated, Foamed and Decomposition Thermic of Formulation Industrial of Copolymers of EVA and PE: Kinetic Methods. Ph.D. Thesis, University of Alicante, Alicante, Spain, November 2002. (In Spanish). [Google Scholar]
- Ibrahim, M.; Alaam, M.; El-Haes, H.; Jalbout, A.F.; De Leon, A. Analysis of the structure and vibrational spectra of glucose and fructose. Eclet. Quím. 2006, 31, 15–21. [Google Scholar] [CrossRef]
- Olvera, C.; Castillo, E.; López-Munguía, A. Fructosiltransferasas, fructanas y fructosa. Biotecnología 2007, 14, 327–346. [Google Scholar]
- Mentink, C.J.; Hendriks, M.; Levels, A.A.; Wolffenbuttel, B.H. Glucose-mediated cross-linking of collagen in rat tendon and skin. Clin. Chim. Acta 2002, 321, 69–76. [Google Scholar] [CrossRef]
- Guerrero, P.; Zugasti, I.; Etxabide, A.; Bao, H.N.D.; Si, T.T.; Peñalba, M.; De La Caba, K. Effect of Fructose and Ascorbic Acid on the Performance of Cross-Linked Fish Gelatin Films. Polymers 2020, 12, 570. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Yang, Q.; Hong, H.; Feng, L.; Liu, J.; Luo, Y. Physicochemical and functional properties of Maillard reaction products derived from cod (Gadus morhua L.) skin collagen peptides and xylose. Food Chem. 2020, 333, 127489. [Google Scholar] [CrossRef]
- Etxabide, A.; Urdanpilleta, M.; Guerrero, P.; De La Caba, K. Effects of cross-linking in nanostructure and physicochemical properties of fish gelatins for bio-applications. React. Funct. Polym. 2015, 94, 55–62. [Google Scholar] [CrossRef]
- Oimomi, M.; Sakai, M.; Ohara, T.; Igaki, N.; Nakamichi, T.; Hata, F.; Baba, S. Acceleration of Fructose Mediated Collagen Glycation. J. Int. Med Res. 1989, 17, 249–253. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Fabrication and Characterization of Hydrogels Based on Gelatinised Collagen with Potential Application in Tissue Engineering. Polymers 2020, 12, 1146. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Rubio-Valle, J.F.; Guerrero, A.; Romero, A. Gelatin vs collagen-based sponges: Evaluation of concentration, additives and biocomposites. J. Polym. Res. 2019, 26, 190. [Google Scholar] [CrossRef]
- Ofner, C.M.; Bubnis, W.A. Chemical and swelling evaluations of amino group crosslinking in gelatin and modified gelatin matrices. Pharm. Res. 1996, 13, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833–4841. [Google Scholar] [CrossRef]
- Tierney, C.M.; Haugh, M.G.; Liedl, J.; Mulcahy, F.; Hayes, B.; O’Brien, F.J. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2009, 2, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Yannas, I.V. Emerging rules for inducing organ regeneration. Biomaterials 2013, 34, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Etxabide, A.; Vairo, C.; Santos-Vizcaino, E.; Guerrero, P.; Pedraz, J.L.; Igartua, M.; De La Caba, K.; Hernandez, R.M. Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. Int. J. Pharm. 2017, 530, 455–467. [Google Scholar] [CrossRef]
- Gaar, J.; Naffa, R.; Brimble, M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020, 7, 2789–2814. [Google Scholar] [CrossRef]
- Li, J.; Pan, J.; Zhang, L.; Yu, Y. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomater. 2003, 24, 2317–2322. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Crosslinking of hybrid scaffolds produced from collagen and chitosan. Int. J. Biol. Macromol. 2019, 139, 262–269. [Google Scholar] [CrossRef] [PubMed]
Scaffold | Concentration (mg/mL) | γcrit (%) | G’1/E’1 (Pa) | |η*1|/|µ*|1 (Pa·s) | tan(δ)1 |
---|---|---|---|---|---|
Hydrogel | 5 | 0.6 a | 0.13 A | 0.13 γ | 0.7 I |
10 | 1.0 ab | 0.4 A | 0.5 δ | 0.6 I | |
20 | 10 c | 144 B | 147 ε | 0.02 II | |
Aerogel | 5 | 0.8 a | 5284 C | 1349 α | 0.10 III |
10 | 1.3 ab | 6076 C | 1270 α | 0.09 III | |
20 | 2.0 b | 20825 D | 3413 β | 0.12 III |
Collagen Concentration (mg/mL) | Fructose Concentration (%) | γcrit (%) | E′1 (Pa) | |µ*|1 (Pa·s) | tan (δ)1 |
---|---|---|---|---|---|
5 | - | 0.8 a | 5284 A | 1349 α | 0.10 I,II |
10 | 0 | 1.3 ab | 6076 A | 1270 α | 0.09 I,II |
10 | 2.0 ab | 5912 A | 969 α | 0.07 I | |
40 | 0.8 a | 11,567 B | 1897 β | 0.12 II | |
20 | - | 2.0 b | 20,825 C | 3413 γ | 0.12 II |
Scaffolds | Crosslinking Degree (%) | Swelling Degree (%) | Pore Size Range (µm) |
---|---|---|---|
Collagen 10 mg/mL (0 wt.% Fructose) | - | 113 A | 130–300 α |
Collagen 10 mg/mL (10 wt.% Fructose) | 18 a | 70 B | 6–55 β |
Collagen 10 mg/mL (40 wt.% Fructose) | 27 b | 32 C | 17–110 β |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Cid, P.; Jiménez‑Rosado, M.; Perez-Puyana, V.; Guerrero, A.; Romero, A. Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers 2021, 13, 632. https://doi.org/10.3390/polym13040632
Sánchez-Cid P, Jiménez‑Rosado M, Perez-Puyana V, Guerrero A, Romero A. Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers. 2021; 13(4):632. https://doi.org/10.3390/polym13040632
Chicago/Turabian StyleSánchez-Cid, Pablo, Mercedes Jiménez‑Rosado, Victor Perez-Puyana, Antonio Guerrero, and Alberto Romero. 2021. "Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose" Polymers 13, no. 4: 632. https://doi.org/10.3390/polym13040632
APA StyleSánchez-Cid, P., Jiménez‑Rosado, M., Perez-Puyana, V., Guerrero, A., & Romero, A. (2021). Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers, 13(4), 632. https://doi.org/10.3390/polym13040632