Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement
Abstract
1. Introduction
2. Materials Manufacturing and Measurements
2.1. Materials and Manufacturing Techniques
2.2. Measurements
3. Results and Discussion
3.1. Thermoset- vs. Thermoplastic-Based Composites
3.2. Thermoplastics Treated by Autoclave after ATP Manufacturing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gürdal, Z.; Haftaka, R.T.; Hajela, P. Design and Optimization of Laminated Composite Materials; John Wiley & Sons, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Rajak, D.P.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Legrand, X.; Cochrane, C.; Koncar, V. A Complex Shaped-Reinforced Thermoplastic Composite Part Made of Commingled Yarns with an Integrated Sensor. In Smart Textiles and their Applications; Koncar, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 353–374. [Google Scholar]
- Rubino, F.; Nistico, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Cui, J.; Wang, S.; Wang, S.; Li, G.; Wang, P.; Liang, C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers 2019, 11, 2019. [Google Scholar] [CrossRef] [PubMed]
- Wakeman, M.D.; Mason, J.A.E. Composites Manufacturing—Thermoplastics. In Design and Manufacture of Textile Composites; Long, A., Ed.; Elsevie: Amsterdam, The Netherlands, 2005; pp. 197–241. [Google Scholar]
- Maurer, D.; Mitschang, P. Laser-Powered Tape Placement Process—Simulation and Optimization. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 129–137. [Google Scholar]
- Hou, W.; Zhang, W. Advanced Composite Materials Defects/Damages and Health Monitoring. In Proceedings of the Prognostics & System Health Management Conference (PHM-2012 Beijing), Beijing, China, 23–25 May 2012. [Google Scholar]
- Antin, K.; Laukkanen, A.; Andersson, T.; Smyl, D.; Vilaca, P. A Multiscale Modelling Approach for Estimating the Effect of Defects in Unidirectional Carbon Fiber Reinforced Polymer Composites. Materials 2019, 12, 1885. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, M.; Nakasumi, S.; Harada, Y. Characterization of Defects in Carbon Fiber-Reinforced Plastics by Inverse Heat Conduction Analysis Using Transfer Matrix Between Layers. Adv. Compos. Mater. 2016, 25, 541–555. [Google Scholar] [CrossRef]
- Potter, K.; Khan, B.; Wisnom, M.; Bell, T.; Stevens, J. Variability, Fibre Waviness and Misalignment in the Determination of the Properties of Composite Materials and Structures. Compos. Part A 2008, 39, 1343–1354. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in Fiber-Reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Ouarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–60. [Google Scholar]
- Meola, C.; Toscano, C. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs). Materials 2014, 7, 1483–1501. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.M.; Wang, D.F.; Wu, Z.J. Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates. Compos. Struct. 2006, 73, 303–309. [Google Scholar] [CrossRef]
- Kuriyama, T.; Mizoguchi, M.; Ogawa, T. Effect of Injection Speed on Internal Structure and Mechanical Properties in Short Glass Fibre Reinforced Polyamide Injection Mouldings. Polym. Polym. Compos. 2004, 12, 423–431. [Google Scholar] [CrossRef]
- Mouritz, A.P. Review of Z-Pinned Composite Laminates. Compos. Part A 2007, 12, 2383–2397. [Google Scholar]
- Greenhalgh, E.S. Failure Analysis and Fractography of Polymer Composites; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Stickler, P.B.; Ramulu, M. Investigation of Mechanical Behaviour of Transverse Stitched T-Joints with PR520 Resin in Flexure and Tension. Compos. Struct. 2001, 52, 307–314. [Google Scholar] [CrossRef]
- Ghayoor, H.; Marsden, C.C.; Hoa, S.V.; Melro, A.R. Numerical Analysis of Resin-Rich Areas and their Effects on Failure Initiation of Composites. Compos. Part A 2019, 117, 125–133. [Google Scholar] [CrossRef]
- Nimbal, S.S.; Banker, M.M.; Roopa, A.; Varughese, B.; Sundaram, R. Effect of Gap Induced Waviness on Compressive Strength of Laminated Composites. Mater. Today Proc. 2016, 4, 8355–8369. [Google Scholar] [CrossRef]
- Christian, W.J.R.; DiazDelaO, F.A.; Atherton, K.; Patterson, E.A. An Experimental Study on the Manufacture and Characterization of In-Plane Fibre-Waviness Defects in Composites. R. Soc. Open Sci. 2018, 5, 180082. [Google Scholar] [CrossRef]
- Fedulov, B.N.; Antonov, F.K.; Safonov, A.A.; Ushakov, A.E.; Lomov, S.V. Influence of Fibre Misalignment and Voids on Composite Laminate Strength. J. Compos. Mater. 2015, 49, 2887–2896. [Google Scholar] [CrossRef]
- Wilhelmsson, D.; Gutkin, R.; Edgren, F.; Asp, L.E. An Experimental Study of Fibre Waviness and its Effects on Compressive Properties of Unidirectional NCF Composites. Compos. Part A 2018, 107, 665–674. [Google Scholar] [CrossRef]
- Pain, D.; Drinkwater, B.W. Detection of Fibre Waviness Using Ultrasonic Array Scattering Data. J. Nondestruct. Eval. 2013, 32, 215–227. [Google Scholar] [CrossRef]
- Clarke, A.R.; Archenhold, G.; Davidson, N.C. A Novel Technique for Determining the 3D Spatial Distribution of Glass Fibres in Polymer Composites. Compos. Sci. Technol. 1995, 55, 75–91. [Google Scholar] [CrossRef]
- Kratmann, K.K.; Sutcliffe, M.P.F.; Lilleheden, L.T.; Pyrz, R.; Thomsen, O.T. A Novel Image Analysis Procedure for Measuring Fibre Misalignment in Unidirectional Fibre Composites. Compos. Sci. Technol. 2009, 69, 228–238. [Google Scholar] [CrossRef]
- Sebaey, T.A.; Catalanotti, G.; O’Dowd, N. An Integrated Approach to Measure and Model Fibre Misalignment in Carbon/Epoxy Composites. Compos. Sci. Technol. 2019, 183. [Google Scholar] [CrossRef]
- Han, Z.; Sun, S.; Li, W.; Zhao, Y.; Shao, Z. Experimental Study of the Effect of Internal Defects on Stress Waves During Automated Fiber Placement. Polymers 2018, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Suprem. Product Data Sheet 10037, Suprem T60% AS4/PA12-2159; Technical Report; Suprem: Yverdon-les-Bains, Switzerland, 2009. [Google Scholar]
- Suprem. Product Destination Sheet 10192, Suprem T60%IM7/PEEK 150; Technical Report; Suprem: Yverdon-les-Bains, Switzerland, 2014. [Google Scholar]
- Hexcel. HexPly 8552 Epoxy Matrix (180 °C/356 °F Curing Matrix) Product Data Sheet; Technical Report; Hexcel Corporation: Stamford, CT, USA, 2016. [Google Scholar]
- Comer, A.J.; Ray, D.; Obande, W.O.; Jones, D.; Lyons, J.; Rosca, I.; O’Higgins, R.M.; McCarthy, M.A. Mechanical Characterisation of Carbon Fibre/PEEK Manufactured by Laser-Assisted Automated-Tape-Placement and Autoclave. Compos. Part A 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Ray, D.; Comer, A.J.; Lyons, J.; Obande, W.; Jones, D.; O’Higgins, R.M.; McCarthy, M.A. Fracture Toughness of Carbon Fiber/Polyether Ether Ketone Composites Manufactured by Autoclave and Laser-Assisted Automated Tape Placement. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Clancy, G.; Peeters, D.; Oliveri, V.; Jones, D.; O’Higgins, R.M.; Weaver, P.M. A Study of the Influence of Processing Parameters on Steering of Carbon Fibre/PEEK Tapes Using Laser-Assisted Tape Placement. Compos. Part B 2019, 163, 243–251. [Google Scholar] [CrossRef]
- Grouve, W.A.; Warnet, L.L.; Rietman, B.; Visser, R.A.; Akkerman, R. Optimization of the Tape Placement Process Parameters for Carbon/PPS Composites. Compos. Part A 2013, 50, 44–53. [Google Scholar] [CrossRef]
- Rao, P.S.; Hardiman, M.; O’Dowd, N.; Sebaey, T.A. Comparison of Progressive Damage between Thermoset and Thermoplastic CFRP Composites under In-Situ Tensile Loading. J. Compos. Mater. 2020. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. IMAGEJ2: ImageJ for the Next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Van Doorn, E.; Dhruva, B.; Sreenivasan, K.R.; Cassella, V. Statistics of Wind Directions and its Increments. Phys. Fluids 2000, 12, 1529–1534. [Google Scholar] [CrossRef]
- Berens, P. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 2009, 31, 1–21. [Google Scholar] [CrossRef]
- ASTM-D3529. Standard Test Methods for Constituent Content of Composite Prepreg; Astm International, American Society for Testing and Materials: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM-D3171. Standard Test Methods for Constituent Content of Composite Materials; Astm International, American Society for Testing and Materials: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Mehdikhani, M.; Petrov, N.A.; Straumit, I.; Melro, A.R.; Lomov, S.V.; Gorbatikh, L. The Effect of Voids on Matrix Cracking in Composite Laminates as Revealed by Combined Computations at the Micro- and Meso-Scales. Compos. Part A 2019, 117, 180–192. [Google Scholar] [CrossRef]
Material | Fibre Volume Fraction | Ply Thickness | Density | Tape/Prepreg Width |
---|---|---|---|---|
% | mm | g/cm | mm | |
IM7/PEEK | 60.0 | 0.14 | 1.588 | 12 |
AS4/PA12 | 60.0 | 0.133 | 1.48 | 12 |
IM7/8552 | 60.0 | 0.131 | 1.57 | 400 |
Property | PEEK | PA12 | 8552 Epoxy Resin |
---|---|---|---|
Trade name | VICTREX PEEK 150UF10 | VESTOSINT 2159 | HexPly 8552 |
Supplier | Suprem | Suprem | Hexcel |
Melting point (C) | 343 | 184 | — |
Glass transition (C) | 143 | 49 | 200 |
Density (g/cm) | 1.30 | 1.02 | 1.30 |
Tensile strength (MPa) | 100 | 73 | 121 |
Tensile Modulus (GPa) | 4.00 | 1.96 | 4.67 |
Lay-Down Speed | Target Temperature | Roller Material | Pressure |
---|---|---|---|
12 m/min | 420 C for IM7/PEEK | Silicone | 1.2 Bar |
210 C for AS4/PA12 |
Property | IM7/PEEK | AS4/PA12 | IM7/8552 |
---|---|---|---|
Void contents (%) | 5.1 | 5.1 | 0.0 |
Fibre volume fraction (%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebaey, T.A.; Bouhrara, M.; O’Dowd, N. Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers 2021, 13, 473. https://doi.org/10.3390/polym13030473
Sebaey TA, Bouhrara M, O’Dowd N. Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers. 2021; 13(3):473. https://doi.org/10.3390/polym13030473
Chicago/Turabian StyleSebaey, Tamer A., Mohamed Bouhrara, and Noel O’Dowd. 2021. "Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement" Polymers 13, no. 3: 473. https://doi.org/10.3390/polym13030473
APA StyleSebaey, T. A., Bouhrara, M., & O’Dowd, N. (2021). Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers, 13(3), 473. https://doi.org/10.3390/polym13030473