Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO2@SiO2 Core-Shell Nano-Architectures
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of TiO2@SiO2 Nanoparticles
2.3. Fabrication of TiO2@SiO2/Polydimethylsiloxane (PDMS) Composites
2.4. Characterization and Measurements
3. Results and Discussion
3.1. Morphology and Characterization of TiO2@SiO2 Nanoparticles
3.2. Morphology of TiO2@SiO2/PDMS Composites
3.3. Functional Properties of TiO2@SiO2/PDMS Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 2010, 31, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Pelrine, R.E.; Kornbluh, R.D.; Joseph, J.P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensor Actuat. A-Phys. 1998, 64, 77–85. [Google Scholar] [CrossRef]
- Tugui, C.; Vlad, S.; Iacob, M.; Varganici, C.D.; Pricop, L.; Cazacu, M. Interpenetrating poly(urethane-urea)–polydimethylsiloxane networks designed as active elements in electromechanical transducers. Polym. Chem. 2016, 7, 2709–2719. [Google Scholar] [CrossRef] [Green Version]
- Rudykh, S.; Lewinstein, A.; Uner, G.; de Botton, G. Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics. Appl. Phys. Lett. 2013, 102, 151905. [Google Scholar] [CrossRef] [Green Version]
- Mu, T.; Liu, L.; Lan, X.; Liu, Y.; Leng, J. Shape memory polymers for composites. Compos. Sci. Technol. 2018, 160, 169–198. [Google Scholar] [CrossRef]
- O’Halloran, A.; O’Malley, F.; McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 2008, 104, 071101. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.D.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Mater. Sci. 2018, 359, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Carpi, F.; Bauer, S.; Rossi, D.D. Stretching Dielectric Elastomer Performance. Mater. Sci. 2010, 330, 1759–1761. [Google Scholar] [CrossRef]
- Carpi, F.; Frediani, G.; Turco, S.; Rossi, D.D. Bioinspired Tunable Lens with Muscle-Like Electroactive Elastomers. Adv. Funct. Mater. 2011, 21, 4152–4158. [Google Scholar] [CrossRef]
- Jordan, G.; McCarthy, D.N.; Schlepple, N.N.; Krissler, J.; Schröder, H.; Kofod, G. Actuated Micro-optical Submount Using a Dielectric Elastomer Actuator. IEEE/ASME T Mech. 2011, 16, 98–102. [Google Scholar] [CrossRef]
- McKay, T.G.; Rosset, S.; Anderson, I.A.; Shea, H. Dielectric elastomer generators that stack up. Smart Mater. Struct. 2015, 24, 015014. [Google Scholar] [CrossRef]
- Vertechy, R.; Pietro, G.; Rosati, P.; Fontana, M. Reduced Model and Application of Inflating Circular Diaphragm Dielectric Elastomer Generators for Wave Energy Harvesting. J. Vib. Acoust. 2015, 137, 011004. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Li, X.G.; Cui, H.X.; Liu, G.Q.; Xu, H.B.; Wu, X.; Yao, W.; Zhong, B.; Huang, X.X.; et al. Electro-thermally driven flexible robot arms based on stacking-controlled graphite nanocomposites. Carbon 2019, 152, 873–881. [Google Scholar] [CrossRef]
- Xiao, Y.; Mao, J.; Shan, Y.; Yang, T.; Chen, Z.; Zhou, F.; He, J.; Shen, Y.; Zhao, J.; Li, T.; et al. Anisotropic electroactive elastomer for highly maneuverable soft robotics. Nanoscale 2020, 12, 7514–7521. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.C.; Duan, Y.M.; Zhou, P.D.; Huang, F.; Zhang, W.; Chen, L.Z. Electric-fish-inspired actuator with integrated energy-storage function. Nano Energy. 2020, 68, 104365. [Google Scholar] [CrossRef]
- Gao, C.; Li, Z.C.; Zou, J.; Cheng, J.; Jiang, K.; Liu, C.R.; Gu, G.Y.; Tao, W.; Song, J. Transfection Based on Dielectric Elastomer Actuator. ACS Appl. Biol. Mater. 2020, 3, 2617–2625. [Google Scholar] [CrossRef]
- Chau, N.; Slipher, G.A.; O’Brien, B.M.; Mrozek, R.A.; Anderson, L.A. Mechanical energy harvesting via a plasticizer-modified electrostrictive polymer. Appl. Phys. Lett. 2016, 108, 103506. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, L.Z. Development of dielectric elastomer nanocomposites as stretchable actuating materials. Appl. Phys. Lett. 2017, 111, 161904. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Yao, S.H.; Liao, R.J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. Acc. Chem. Res. 2018, 52, 316–325. [Google Scholar] [CrossRef]
- Sarmad, M.P.; Zahiri, B.; Noroozi, M. Graphene-based composite for dielectric elastomer actuator: A comprehensive review. Sensor Actuat. A-Phys. 2019, 293, 222–241. [Google Scholar] [CrossRef]
- Zheng, X.F.; Huang, Y.Z.; Zheng, S.D.; Liu, Z.Y.; Yang, M.B. Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes. J. Thermoplast. Compos. 2018, 32, 473–486. [Google Scholar] [CrossRef]
- Tian, M.; Wei, Z.; Zan, X.; Zhang, L.; Zhang, J.; Ma, Q.; Ning, N.; Nishi, T. Thermally expanded graphene nanoplates/polydimethylsiloxane composites with high dielectric constant. low dielectric loss and improved actuated strain. Compos. Sci. Technol. 2014, 99, 37–44. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.L.; Zhou, J.X. Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Compos. Part A 2013, 52, 55–61. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, L.Q.; Yang, D.; Yu, Y.C.; Yao, L.; Tian, M. Mechanical, Dielectric, and Actuated Strain of Silicone Elastomer Filled with Various Types of TiO2. Soft Mater. 2013, 11, 363–370. [Google Scholar] [CrossRef]
- Jiang, L.; Betts, A.; Kennedy, D.; Jerrams, S. The fabrication of dielectric elastomers from silicone rubber and barium titanate: Employing equi-biaxial pre-stretch to achieve large deformations. J. Mater. Sci. 2015, 50, 7930–7938. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, D.R.; Hu, P.H.; Zha, J.W.; You, F.; Li, S.T.; Dang, Z.M. Highly improved electro-actuation of dielectric elastomers by molecular grafting of azobenzenes to silicon rubber. J. Mater. Chem. C 2015, 3, 4883–4889. [Google Scholar] [CrossRef]
- Yang, D.; Tian, M.; Dong, Y.C.; Liu, H.L.; Yu, Y.C.; Zhang, L.Q. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer. Smart Mater. Struct. 2012, 21, 035017. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, D.R.; Zha, J.W.; Zhao, J.; Dang, Z.M. Increased electroaction through a molecular flexibility tuning process in TiO2–polydimethylsilicone nanocomposites. J. Mater. Chem. A 2013, 1, 3140–3145. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Yang, M.H.; Dang, Z.M.; Bai, J.B. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Appl. Phys. Lett. 2015, 106, 092904. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, F.W.; Zuo, Y.J.; Zhang, Y.J.; Chen, X.M.; Li, B.; Zhang, N.; Niu, G.; Ren, W.; Ye, Z.G. Improving actuation strain and breakdown strength of dielectric elastomers using core-shell structured CNT-Al2O3. Compos. Sci. Technol. 2020, 200, 108393. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.F.; Kong, X.X.; Wang, Y.X.; Zhang, L.Q. A mussel-like inspired modification of BaTiO3 nanoparticles using catechol/polyamine co-deposition and silane grafting for high-performance dielectric elastomer composites. Compos. Part B-Eng. 2019, 172, 621–627. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.H.; Ning, N.Y.; Zhang, L.Q. A self-healing dielectric supramolecular elastomer modified by TiO2/urea particles. Chem. Eng. J. 2019, 375, 121993. [Google Scholar] [CrossRef]
- Yin, G.; Yang, Y.; Song, F.; Renard, C.; Dang, Z.M.; Shi, C.Y.; Wang, D. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites. ACS Appl. Mater. Interfaces 2017, 9, 5237–5243. [Google Scholar] [CrossRef]
- Ning, N.; Li, S.; Sun, H.; Wang, Y.; Liu, S.; Yao, Y.; Yan, B.; Zhang, L.; Tian, M. Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomers by the synergistic effect of polyethylene glycol and partially reduced graphene oxide. Compos. Sci. Technol. 2017, 142, 311–320. [Google Scholar] [CrossRef]
- Chen, Y.; Agostini, L.; Moretti, G.; Fontana, M.; Vertechy, R. Dielectric elastomer materials for large-strain actuation and energy harvesting: A comparison between styrenic rubber, natural rubber and acrylic elastomer. Smart. Mater. Struct. 2019, 28, 114001. [Google Scholar] [CrossRef]
- Madsen, F.B.; Daugaard, A.E.; Hvilsted, S.; Skov, A.L. Macromol The Current State of Silicone-Based Dielectric Elastomer Transducers. Rapid Commun. 2016, 37, 378–413. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Song, F.L.; Lin, X.; Wang, D.R. Mater Chem High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Mater. Chem. Phys. 2020, 241, 122373. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid. Interf. Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Yu, L.Y.; Madsen, F.B.; Hvilsted, S.; Skov, A.L. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks. RSC Adv. 2015, 5, 49739–49747. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.C.; Herricks, T.; Xia, Y.N. Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Adv. Mater. 2003, 15, 1205–1209. [Google Scholar] [CrossRef]
- Ren, C.J.; Qiu, W.; Chen, Y.Q. Physicochemical properties and photocatalytic activity of the TiO2/SiO2 prepared by precipitation method. Sep. Purif. Technol. 2013, 107, 264–272. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Serio, M.; Tesser, R.; Santacesaria, E. Grafting of titanium alkoxides on high-surface SiO2 support: An advanced technique for the preparation of nanostructured TiO2/SiO2 catalysts. Appl. Catal. A-Gen. 2007, 325, 256–262. [Google Scholar] [CrossRef]
- Ukmar, T.; Godec, A.; Maver, U.; Planinsek, O.; Bele, M.; Jamnik, J.; Gaberscek, M. Suspensions of modified TiO2 nanoparticles with supreme UV filtering ability. J. Mater. Chem. 2009, 19, 8176–8183. [Google Scholar] [CrossRef]
- Xu, G.Q.; Zheng, Z.X.; Wu, Y.C.; Feng, N. Effect of silica on the microstructure and photocatalytic properties of titania. Ceram. Int. 2009, 35, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Chen, K. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl. Catal. A-Gen. 2005, 284, 193–198. [Google Scholar] [CrossRef]
- Chi, Y.; Yuan, Q.; Li, Y.; Zhao, L.; Li, N.; Li, X.; Yan, W. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 2013, 262, 404–411. [Google Scholar] [CrossRef]
- Lbrahim, L.D.; Jamiru, T.; Sadiku, E.R.; Hamam, Y.; Alayli, Y.; Eze, A.A. Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectr. 2019, 2, 115–122. [Google Scholar] [CrossRef]
- Mori, K.; Hirai, N.; Ohki, Y.; Otake, Y.; Umemoto, T.; Muto, H. Effects of interaction between filler and resin on the glass transition and dielectric properties of epoxy resin nanocomposites. IET Nanodielectr. 2019, 2, 92–96. [Google Scholar] [CrossRef]
- Xiong, L.; Zheng, S.D.; Xu, Z.W.; Liu, Z.Y.; Yang, W.; Yang, M.B. Enhanced performance of porous silicone-based dielectric elastomeric composites by low filler content of Ag@SiO2 Core-Shell nanoparticles. Nanocomposites 2019, 4, 238–243. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Zhao, H.; Zhang, N.; Bai, J. Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO2@SiO2 Core-Shell Nano-Architectures. Polymers 2021, 13, 368. https://doi.org/10.3390/polym13030368
Gao S, Zhao H, Zhang N, Bai J. Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO2@SiO2 Core-Shell Nano-Architectures. Polymers. 2021; 13(3):368. https://doi.org/10.3390/polym13030368
Chicago/Turabian StyleGao, Shuyan, Hang Zhao, Na Zhang, and Jinbo Bai. 2021. "Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO2@SiO2 Core-Shell Nano-Architectures" Polymers 13, no. 3: 368. https://doi.org/10.3390/polym13030368
APA StyleGao, S., Zhao, H., Zhang, N., & Bai, J. (2021). Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO2@SiO2 Core-Shell Nano-Architectures. Polymers, 13(3), 368. https://doi.org/10.3390/polym13030368