Superior Interaction of Electron Beam Irradiation with Carbon Nanotubes Added Polyvinyl Alcohol Composite System
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of PVOH/CNTs Composites
2.3. Characterization Testing
2.3.1. Tensile Test
2.3.2. X-ray Diffraction (XRD) Test
2.3.3. Differential Scanning Calorimetry (DSC) Test
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.5. Scanning Electron Microscopy Analysis (SEM)
3. Results and Discussion
3.1. Tensile Properties
3.1.1. Tensile Strength
3.1.2. Young’s Modulus
3.2. XRD Analysis
3.3. Scanning Electron Microscopy (SEM) Observation
3.4. Differential Scanning Calorimetry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bee, S.T.; Ratnam, C.T.; Sin, L.T.; Tee, T.T.; Hui, D.; Kadhum, A.A.H.; Rahmat, A.R.; Lau, J. Effects of electron beam irradiation on mechanical properties and nanostructural-morpholgy of montmorillonite added polyvinyl alcohol composite. Compos. B Eng. 2014, 63, 141–153. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sin, L.T.; Bee, S.T.; Tee, T.T.; Kadhum, A.A.H.; Ma, C.; Rahmat, A.R.; Veerasamy, P. Characterization of α-tocopherol as interacting agent in polyvinyl alcohol-starch blends. Carbohydr. Polym. 2013, 98, 1281–1287. [Google Scholar] [CrossRef]
- Shafee, E.E.; Naguib, H.F. Water sorption in cross-linked poly (vinyl alcohol) networks. Polymer 2003, 44, 1647–1653. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.K. Plasticizer effect on the melting and crystallization behaviour of polyvinyl alcohol. Polymer 2003, 44, 8139–8146. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Xin, C.; Eldin, M.S.; Kenawy, E.S. Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 2015, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bee, S.T.; Sin, L.T.; Khor, S.L.; Lim, K.S.; Rahmat, A.R. Enhancement of mechanical and thermal properties of poly (vinyl alcohol)-dialdehyde starch composites via the incorporation of montmorillonite nanofillers. J. Vinyl. Addit. Technol. 2017, 23, E128–E141. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, D.; Liu, J.; Liu, J.; Li, L.; Zhang, L.; Lv, J. Fabrication and characterization of poly (vinyl alcohol)/carbon nanotue melt spinning composites fiber. Prog. Nat. Sci. Mater. Int. 2015, 25, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Wongon, J.; Thumsorn, S.; Srisawat, N. Poly (vinyl alcohol)/multiwalled carbon nanotubes composite nanofiber. Energy Procedia 2016, 89, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Bee, S.T.; Hassan, A.; Ratnam, C.T.; Tee, T.T.; Sin, L.T. Effects of montmorillonite on the electron beam irradiated alumina trihydrate added polyethylene and ethylene vinyl acetate nanocomposite. Polym. Compos. 2012, 33, 1883–1892. [Google Scholar] [CrossRef]
- Bee, S.T.; Hassan, A.; Ratnam, C.T.; Tee, T.T.; Sin, L.T.; Hui, D. Dispersion, and roles of montmorillonite on structural, flammability, thermal and mechanical behaviours of electron beam irradiated flame retarded nanocomposite. Compos. B Eng. 2014, 61, 41–48. [Google Scholar] [CrossRef]
- Sharif, J.; Dahlan, K.Z.M.; Wan Yunus, W.M.Z. Electron beam crosslinking of poly (ethylene-co-vinyl acetate)/clay nanocomposites. Radiat. Phys. Chem. 2007, 76, 1698–1702. [Google Scholar] [CrossRef]
- Khonakdar, H.A.; Jafari, S.; Wagenknecht, U.; Jehnichen, D. Effect of electron-irradiation on cross-link density and crystalline structure of low—And high-density polyethylene. Radiat. Phys. Chem. 2006, 75, 78–86. [Google Scholar] [CrossRef]
- He, Y.; Gao, J.; Gong, X.; Xu, J. The role of carbon nanotubes in promoting the properties of carbon black-filled natural rubber/butadiene rubber composites. Results Phys. 2017, 7, 4353–4358. [Google Scholar]
- Guo, S.; Liu, Q.; Zhao, J.; Jin, G.; Wang, X.; Lang, Z.; He, W.; Gong, Z. Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes. Appl. Energ. 2017, 205, 703–709. [Google Scholar] [CrossRef]
- Burmistrov, I.; Gorshkov, N.; Ilinykh, I.; Muratov, D.; Kolesnikov, E.; Yakovlev, E.; Mazov, I.; Issi, J.P.; Kuznetsov, D. Mechanical and electrical properties of ethylene-1-octene and polypropylene composites filled with carbon nanotubes. Compos. Sci. Technol. 2017, 147, 71–77. [Google Scholar] [CrossRef]
- El Moumen, A.; Tarfaoui, M.; Lafdi, K. Mechanical characterization of carbon nanotubes-based polymer composites using indentation tests. Compos. B Eng. 2017, 114, 1–7. [Google Scholar] [CrossRef]
- Sui, X.; Greenfeld, I.; Cohen, H.; Zhang, X.; Li, Q.; Wagner, H.D. Mutilevel composite using nanotube fibers (CNTF). Compos. Sci. Technol. 2016, 137, 35–43. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wang, Q.; Xing, M. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos. B Eng. 2017, 133, 35–41. [Google Scholar] [CrossRef]
- Sugiura, T.; Fujishige, M.; Noguchi, T.; Ueki, H.; Niihara, K.; Takeuchi, K. Contact resistance of multi-walled carbon nanotube/natural rubber nanocomposites with metalic ball. J. Phys. Chem. Solids 2016, 99, 82–85. [Google Scholar] [CrossRef]
- Bee, S.T.; Hassan, A.; Ratnam, C.T.; Tee, T.T.; Sin, L.T. Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and thylene vinyl acetate blends. Nucl. Instrum. Methods Phys. Res. B 2013, 299, 42–50. [Google Scholar] [CrossRef]
- Bee, S.T.; Sin, L.T.; Ratnam, C.T.; Yap, B.F.; Rahmat, A.R. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol. Nucl. Instrum. Methods Phys. Res. B 2018, 416, 73–88. [Google Scholar] [CrossRef]
- Liu, M.; Yin, Y.; Zheng, X.; Shen, S.; Deng, P.; Zheng, C.; Teng, H.; Zhang, W. The effects of gamma-irradiation on the structure, thermal resistance and mechanical proeprties of the PLA/EVOH blends. Nucl. Instrum. Methods Phys. Res. B 2012, 274, 139–144. [Google Scholar] [CrossRef]
- Ng, H.M.; Bee, S.T.; Ratnam, C.T.; Sin, L.T.; Phang, Y.Y.; Tee, T.T.; Rahmat, A.R. Effectiveness of trimethylopropane trimethacrylate for the electron beam irradiation induced cross-linking of polylactic acid. Nucl. Instrum. Methods Phys. Res. B 2013, 319, 62–70. [Google Scholar] [CrossRef]
- Zhao, Z.; Teng, K.; Li, N.; Li, X.; Xu, Z.; Chen, L.; Niu, J.; Fu, H.; Zhao, L.; Liu, Y. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites by carbon nanotube in matrix/interface. Compos. Struct. 2017, 159, 761–772. [Google Scholar] [CrossRef]
- Liu, H.; Bai, H.; Bai, D.; Liu, Z.; Zhang, Q.; Fu, Q. Design of high-performance poly(L-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. Polymer 2017, 108, 38–49. [Google Scholar] [CrossRef]
- Bee, S.T.; Hassan, A.; Ratnam, C.T.; Tee, T.T.; Sin, L.T. Effects of Irradiation on the Mechanical, Electrical, and Flammability Properties of (Low-Density Polyethylene)/(Ethylene-Vinyl Acetate Copolymer) Blends Containing Alumina Trihydrate. J. Vinyl Addit. Technol. 2014, 20, 91–98. [Google Scholar] [CrossRef]
- Liew, K.M.; Kai, M.F.; Zhang, L.W. Carbon nanotube reinforced cementitious composites: An overview. Compos. Part A Appl. Sci. Manuf. 2016, 91, 301–323. [Google Scholar] [CrossRef]
- Ye, D.; Jiang, L.; Hu, X.; Zhang, M. Lignosulfonate as reinforcement in polyvinyl alcohol film: Mechanical properties and interaction analysis. Int. J. Biol. Macromol. 2016, 83, 209–215. [Google Scholar] [CrossRef]
- Rosehr, A.; Luinstra, G.A. Polypropylene composites with finely dispersed multi-walled carbon nanotubes covered with an aluminum oxide shell. Polymer 2017, 120, 164–175. [Google Scholar] [CrossRef]
- Tee, T.T.; Sin, L.T.; Gobinath, R.; Bee, S.T.; Hui, D.; Rahmat, A.R.; Kong, I.; Fang, Q.H. Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol-starch blends prepared via solution cast approach. Compos. B Eng. 2013, 47, 238–247. [Google Scholar] [CrossRef]
- Jayasekara, R.; Harding, L.; Bowater, I.; Christie, G.B.Y.; Lonergan, G.T. Preparation, surface modification and characterisation of solution cast PVA blended films. Polym. Test 2004, 23, 17–27. [Google Scholar] [CrossRef]
- Sin, L.T.; Rahman, W.; Rahmat, A.R.; Samad, A.A. Computational modeling and experimental infrared spectroscopy of hydrogen bonding interactions in polyvinyl alcohol–starch blends. Polymer 2015, 51, 1206–1211. [Google Scholar] [CrossRef]
Samples/Polyvinyl Alcohol Nanocomposites | 2 Theta (2θ), o | d-Spacing, Å | Inter-Chain Separation (R), Å | |
---|---|---|---|---|
Loading Level of CNTs*, phr* | Electron Beam Irradiation Dosage, kGy | |||
Pure Carbon Nanotubes (CNTs) | 0.9112 | 96.873 | 121.04 | |
0.5 | 0 | 0.8990 | 98.188 | 122.69 |
10 | 1.0281 | 85.858 | 107.28 | |
20 | 1.0369 | 85.130 | 106.37 | |
30 | 1.0245 | 86.160 | 107.66 | |
1.0 | 0 | 0.8918 | 98.980 | 123.68 |
10 | 1.0263 | 86.009 | 107.47 | |
20 | 1.039 | 84.958 | 106.16 | |
30 | 1.0469 | 84.317 | 105.35 | |
1.5 | 0 | 0.8984 | 98.253 | 122.77 |
10 | 1.0255 | 86.076 | 107.55 | |
20 | 1.0344 | 85.336 | 106.63 | |
30 | 1.0369 | 85.130 | 106.37 | |
2.0 | 0 | 0.9018 | 97.883 | 122.31 |
10 | 1.0300 | 85.675 | 107.08 | |
20 | 1.0438 | 84.567 | 105.67 | |
30 | 1.0288 | 85.800 | 107.21 |
Loading Level of Carbon Nanotubes (CNTs), phr | Electron Beam Irradiation Dosage, kGy | Wavenumber, cm−1 | |
---|---|---|---|
O–H Stretching | C–H Stretching | ||
0.5 | 0 | 3264.71 | 2921.21 |
10 | 3259.29 | 2921.66 | |
20 | 3258.24 | 2925.10 | |
30 | 3257.64 | 2922.67 | |
1.0 | 0 | 3266.45 | 2922.39 |
10 | 3257.91 | 2923.93 | |
20 | 3256.20 | 2932.95 | |
30 | 3255.69 | 2933.48 | |
1.5 | 0 | 3266.12 | 2920.82 |
10 | 3258.11 | 2924.94 | |
20 | 3257.67 | 2924.74 | |
30 | 3255.68 | 2924.80 | |
2.0 | 0 | 3265.10 | 2920.67 |
10 | 3259.82 | 2921.73 | |
20 | 3251.12 | 2922.49 | |
30 | 3249.92 | 2922.17 |
Samples/Polyvinyl Alcohol Nanocomposites | Melting Temperature, °C | Enthalpy of Melting, J/g | |
---|---|---|---|
Loading Level of CNTs*, phr* | Electron Beam Irradiation Dosage, kGy | ||
0.5 | 0 | 221.50 | 21.69 |
10 | 221.51 | 14.07 | |
30 | 222.92 | 35.83 | |
1.0 | 0 | 220.5 | 22.38 |
10 | 219.75 | 17.70 | |
30 | 217.98 | 13.60 | |
1.5 | 0 | 221.00 | 29.46 |
10 | 221.26 | 15.76 | |
30 | 223.79 | 12.78 | |
2.0 | 0 | 221.00 | 26.59 |
10 | 221.06 | 40.33 | |
30 | 222.12 | 31.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bee, S.-T.; Ooi Ker Qi, N.; Sin, L.T.; Ng, H.-M.; Lim, J.-V.; Ratnam, C.T.; Ma, C. Superior Interaction of Electron Beam Irradiation with Carbon Nanotubes Added Polyvinyl Alcohol Composite System. Polymers 2021, 13, 4334. https://doi.org/10.3390/polym13244334
Bee S-T, Ooi Ker Qi N, Sin LT, Ng H-M, Lim J-V, Ratnam CT, Ma C. Superior Interaction of Electron Beam Irradiation with Carbon Nanotubes Added Polyvinyl Alcohol Composite System. Polymers. 2021; 13(24):4334. https://doi.org/10.3390/polym13244334
Chicago/Turabian StyleBee, Soo-Tueen, Nicole Ooi Ker Qi, Lee Tin Sin, Hon-Meng Ng, Jun-Ven Lim, Chantara Thevy Ratnam, and Chi Ma. 2021. "Superior Interaction of Electron Beam Irradiation with Carbon Nanotubes Added Polyvinyl Alcohol Composite System" Polymers 13, no. 24: 4334. https://doi.org/10.3390/polym13244334