The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. PSC Fabrication
2.2. Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. XPS Analysis
3.3. External Quantum Efficiency Analysis
3.4. Electrochemical Impedance Spectroscopy Analysis
3.5. Statistical Analysis of PV Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Liu, Z.; Wang, L.; Xie, X. An organic-inorganic hybrid hole transport bilayer for improving the performance of perovskite solar cells. Chem. Phys. 2021, 542, 111061. [Google Scholar] [CrossRef]
- Zhang, Y.; Kirs, A.; Ambroz, F.; Lin, C.T.; Bati, A.S.; Parkin, I.P.; Shapter, J.G.; Batmunkh, M.; Macdonald, T.J. Ambient fabrication of organic–inorganic hybrid perovskite solar cells. Small Methods 2021, 5, 2000744. [Google Scholar] [CrossRef]
- Seo, S.; Park, I.J.; Kim, M.; Lee, S.; Bae, C.; Jung, H.S.; Park, N.-G.; Kim, J.Y.; Shin, H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 2016, 8, 11403–11412. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; He, Y.; Li, S.; Sun, Q.; Liu, Y.; Wu, Y.; Cui, Y.; Li, Z.; Wang, H.; Hao, Y. Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Org. Electron. 2019, 70, 292–299. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Lee, M.L.; Kang, M.G.; Im, S.H. Efficient organic–inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl. Mater. Interfaces 2018, 10, 31413–31421. [Google Scholar] [CrossRef] [PubMed]
- Bouclé, J.; Herlin-Boime, N. The benefits of graphene for hybrid perovskite solar cells. Synth. Met. 2016, 222, 3–16. [Google Scholar] [CrossRef]
- Xu, X.; Sun, L.; Shen, K.; Zhang, S. Organic and hybrid organic-inorganic flexible optoelectronics: Recent advances and perspectives. Synth. Met. 2019, 256, 116137. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, D.; Shuai, Z. Doping optimization of organic-inorganic hybrid perovskite CH3NH3PbI3 for high thermoelectric efficiency. Synth. Met. 2017, 225, 108–114. [Google Scholar] [CrossRef]
- Kanemitsu, Y.; Okano, M.; Yamada, Y. Light emission from thin film solar cell materials: An emerging infrared and visible light emitter. ECS J. Solid State Sci. Technol. 2017, 7, R3102. [Google Scholar] [CrossRef]
- Jeng, J.Y.; Chiang, Y.F.; Lee, M.H.; Peng, S.R.; Guo, T.F.; Chen, P.; Wen, T.C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef]
- Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140. [Google Scholar] [CrossRef]
- Liu, T.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457. [Google Scholar] [CrossRef]
- Castro-Hermosa, S.; Wouk, L.; Bicalho, I.S.; de Queiroz Corrêa, L.; de Jong, B.; Cinà, L.; Brown, T.M.; Bagnis, D. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Res. 2021, 14, 1034–1042. [Google Scholar] [CrossRef]
- Shibayama, N.; Kanda, H.; Kim, T.W.; Segawa, H.; Ito, S. Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Mater. 2019, 7, 031117. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Park, S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Yoon, S.C.; Seok, S.I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 2014, 7, 2642–2646. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 6230–6237. [Google Scholar] [CrossRef]
- Duan, L.; Chen, Y.; Yuan, J.; Zong, X.; Sun, Z.; Wu, Q.; Xue, S. Dopant-free X-shaped DA type hole-transporting materials for pin perovskite solar cells. Dye. Pigment. 2020, 178, 108334. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, Q.; Sun, Z.; Xue, S.; Liang, M. Molecularly engineering of truxene-based dopant-free hole-transporting materials for efficient inverted planar perovskite solar cells. Dye. Pigment. 2019, 165, 81–89. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.; Jiu, T.; Ma, S.; Li, J.; Xiao, X.; Zhang, W. Tetrathiafulvalene derivative as a new hole-transporting material for highly efficient perovskite solar cell. Dye. Pigment. 2017, 147, 113–119. [Google Scholar] [CrossRef]
- Feng, X.; Huan, Y.; Zheng, C.; Tan, C.; Meng, H.; Liu, B.; Gao, D.; Huang, W. A series of porphyrins as interfacial materials for inverted perovskite solar cells. Org. Electron. 2020, 77, 105522. [Google Scholar] [CrossRef]
- Qiu, W.; Buffiere, M.; Brammertz, G.; Paetzold, U.W.; Froyen, L.; Heremans, P.; Cheyns, D. High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org. Electron. 2015, 26, 30–35. [Google Scholar] [CrossRef]
- He, B.; Wang, R.; Lu, H.; Ji, Y.; Song, Q.; Tang, X.; Jin, Y.; Wu, F.; Zhu, L. Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells. Org. Electron. 2019, 69, 13–19. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826. [Google Scholar] [CrossRef] [Green Version]
- Schutze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Laroussi, M.; Akan, T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Process. Polym. 2007, 4, 777–788. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Graves, D.B. Low temperature plasma biomedicine: A tutorial review. Phys. Plasmas 2014, 21, 080901. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Mohamed, A.A.H.; Kang, S.K.; Woo, K.C.; Kim, K.T.; Lee, J.K. 900-MHz nonthermal atmospheric pressure plasma jet for biomedical applications. Plasma Process. Polym. 2010, 7, 258–263. [Google Scholar] [CrossRef]
- Rusu, L.-C.; Ardelean, L.C.; Jitariu, A.-A.; Miu, C.A.; Streian, C.G. An insight into the structural diversity and clinical applicability of polyurethanes in biomedicine. Polymers 2020, 12, 1197. [Google Scholar] [CrossRef]
- Ito, M.; Oh, J.S.; Ohta, T.; Shiratani, M.; Hori, M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process. Polym. 2018, 15, 1700073. [Google Scholar] [CrossRef]
- Štěpánová, V.; Slavíček, P.; Kelar, J.; Prášil, J.; Smékal, M.; Stupavská, M.; Jurmanová, J.; Černák, M. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process. Polym. 2018, 15, 1700076. [Google Scholar] [CrossRef]
- Hao, Y.-C.; Nurzal, N.; Chien, H.-H.; Liao, C.-Y.; Kuok, F.-H.; Yang, C.-C.; Chen, J.-Z.; Yu, I.-S. Application of atmospheric-pressure-plasma-jet modified flexible graphite sheets in reduced-graphene-oxide/polyaniline supercapacitors. Polymers 2020, 12, 1228. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.-Y.; Lu, N.-H.; Lu, Y.-S.; Chen, C.-H.; Lee, Y.-L.; Chen, J.-Z. Surface modification of FeCoNiCr medium-entropy alloy (MEA) using octadecyltrichlorosilane and atmospheric-pressure plasma jet. Polymers 2020, 12, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-Z.; Wang, C.; Hsu, C.-C.; Cheng, I.-C. Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet. Carbon 2016, 98, 34–40. [Google Scholar] [CrossRef]
- Wu, T.-J.; Chou, C.-Y.; Hsu, C.-M.; Hsu, C.-C.; Chen, J.-Z.; Cheng, I.-C. Ultrafast synthesis of continuous Au thin films from chloroauric acid solution using an atmospheric pressure plasma jet. RSC Adv. 2015, 5, 99654–99657. [Google Scholar] [CrossRef]
- Hilt, F.; Hovish, M.Q.; Rolston, N.; Brüning, K.; Tassone, C.J.; Dauskardt, R.H. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy Environ. Sci. 2018, 11, 2102–2113. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Seo, H.-K.; Nazeeruddin, M.K.; Shin, H.-S. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies. J. Phys. Chem. C 2015, 119, 10379–10390. [Google Scholar] [CrossRef]
- Homola, T.s.; Pospisil, J.; Shekargoftar, M.; Svoboda, T.s.; Hvojnik, M.; Gemeiner, P.; Weiter, M.; Dzik, P. Perovskite solar cells with low-cost TiO2 mesoporous photoanodes prepared by rapid low-temperature (70 °C) plasma processing. ACS Appl. Energy Mater. 2020, 3, 12009–12018. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Cheng, I.-C.; Hsu, C.-C.; Chueh, C.-C.; Chen, J.-Z. Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells. Electrochim. Acta 2019, 293, 1–7. [Google Scholar] [CrossRef]
- Chen, Z.-C.; Cheng, Y.; Lin, C.-C.; Li, C.-S.; Hsu, C.-C.; Chen, J.-Z.; Wu, C.-I.; Cheng, I.-C. In-situ atmospheric-pressure dielectric barrier discharge plasma treated CH3NH3PbI3 for perovskite solar cells in regular architecture. Appl. Surf. Sci. 2019, 473, 468–475. [Google Scholar] [CrossRef]
- Li, T.-E.; Tsai, J.-H.; Cheng, I.-C.; Hsu, C.-C.; Chen, J.-Z. Atmospheric-pressure surface-diffusion dielectric-barrier discharge (SDDBD) plasma surface modification of PEDOT: PSS. Synth. Met. 2019, 256, 116114. [Google Scholar] [CrossRef]
- Lin, C.-I.; Tsai, J.-H.; Chen, J.-Z. Scanning atmospheric-pressure plasma jet treatment of nickel oxide with peak temperature of ∼500 °C for fabricating p–i–n structure perovskite solar cells. RSC Adv. 2020, 10, 11166–11172. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Cheng, I.-C.; Hsu, C.-C.; Chen, J.-Z. Low-temperature (<40 °C) atmospheric-pressure dielectric-barrier-discharge-jet treatment on nickel oxide for p–i–n structure perovskite solar cells. ACS Omega 2020, 5, 6082–6089. [Google Scholar] [CrossRef]
- Fan, C.-F.; Tsai, J.-H.; Liao, Y.-C.; Cheng, I.-C.; Hsu, C.-C.; Chen, J.-Z. Low temperature (<40 °C) atmospheric-pressure dielectric-barrier-discharge-jet (DBDjet) plasma treatment on jet-sprayed silver nanowires (AgNWs) electrodes for fully solution-processed nip structure perovskite solar cells. ECS J. Solid State Sci. Technol. 2020, 9, 055016. [Google Scholar] [CrossRef]
- Mallela, M.S.; Tsai, J.-H.; Huang, J.-Z.; Hsu, C.-c.; Chen, M.-H.; Wu, C.-I.; Chen, J.Z.; Cheng, I.-C. Dielectric barrier discharge jet processed TiO2 nanoparticle layer for flexible perovskite solar cells. J. Phys. D Appl. Phys. 2021, 55, 034003. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Zheng, X.; Jiang, T.; Bai, L.; Chen, X.; Chen, Z.; Xu, X.; Song, D.; Xu, X.; Li, B.; Yang, Y.M. Enhanced thermal stability of inverted perovskite solar cells by interface modification and additive strategy. RSC Adv. 2020, 10, 18400–18406. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Baji, A.; Tien, H.-W.; Yang, Y.-K.; Yang, S.-Y.; Ma, C.-C.M.; Liu, H.-Y.; Mai, Y.-W.; Wang, N.-H. Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films. Nanotechnology 2011, 22, 475603. [Google Scholar] [CrossRef]
- Cheng, P.-Y.; Tsai, J.-H.; Chen, J.-Z. Hydrophilic patterning of octadecyltrichlorosilane (OTS)-coated paper via atmospheric-pressure dielectric-barrier-discharge jet (DBDjet). Cellulose 2020, 27, 10293–10301. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y.-B.; Han, L. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. 2015, 8, 629–640. [Google Scholar] [CrossRef]
- Hu, W.; Xu, C.Y.; Niu, L.B.; Elseman, A.M.; Wang, G.; Liu, D.B.; Yao, Y.Q.; Liao, L.P.; Zhou, G.D.; Song, Q.L. High open-circuit voltage of 1.134 V for inverted planar perovskite solar cells with sodium citrate-doped PEDOT: PSS as a hole transport layer. ACS Appl. Mater. Interfaces 2019, 11, 22021–22027. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Park, N.G. On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 2019, 31, 1805214. [Google Scholar] [CrossRef]
- Wu, C.-G.; Chiang, C.-H.; Tseng, Z.-L.; Nazeeruddin, M.K.; Hagfeldt, A.; Grätzel, M. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 2015, 8, 2725–2733. [Google Scholar] [CrossRef]
- Kim, H.-S.; Jang, I.-H.; Ahn, N.; Choi, M.; Guerrero, A.; Bisquert, J.; Park, N.-G. Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 2015, 6, 4633–4639. [Google Scholar] [CrossRef] [PubMed]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.-W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Chen, B.; Yang, M.; Zheng, X.; Wu, C.; Li, W.; Yan, Y.; Bisquert, J.; Garcia-Belmonte, G.; Zhu, K.; Priya, S. Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 4693–4700. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, Y.; Li, H.; Li, G.; Pan, J.; Xu, D.; Zhao, Q.; Yu, D. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 3937–3945. [Google Scholar] [CrossRef]
- Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, X.; Yang, M.; Zhou, Y.; Kundu, S.; Shi, J.; Zhu, K.; Priya, S. Interface band structure engineering by ferroelectric polarization in perovskite solar cells. Nano Energy 2015, 13, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T. Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, M.; Priya, S.; Zhu, K. Origin of J–V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 905–917. [Google Scholar] [CrossRef]
- Umeyama, T.; Matano, D.; Shibata, S.; Baek, J.; Ito, S.; Imahori, H. Thermal precursor approach to pristine fullerene film as electron selective layer in perovskite solar cells. ECS J. Solid State Sci. Technol. 2017, 6, M3078. [Google Scholar] [CrossRef]
- Yuan, D.-X.; Yuan, X.-D.; Xu, Q.-Y.; Xu, M.-F.; Shi, X.-B.; Wang, Z.-K.; Liao, L.-S. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Phys. Chem. Chem. Phys. 2015, 17, 26653–26658. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Espinoza, A.; Collavini, S.; Delgado, J.L. Doping strategies of organic n-type materials in perovskite solar cells: A chemical perspective. Sustain. Energy Fuels 2020, 4, 3264–3281. [Google Scholar] [CrossRef]
% | C–C | C–N |
---|---|---|
BCP as-deposited | 97.81 | 2.19 |
BCP He DBDjet 3 cm/s | 87.56 | 12.44 |
BCP He DBDjet 2 cm/s | 94.55 | 5.45 |
BCP He DBDjet 1 cm/s | 92.65 | 7.35 |
BCP He DBDjet 0.5 cm/s | 94.24 | 5.76 |
Voc (V) | Jsc (mA/cm2) | F.F. (%) | PCE (%) | ||
---|---|---|---|---|---|
No plasma treatment | Forward | 1.07 | 16.63 | 64.71 | 11.46 |
Reverse | 1.08 | 17.21 | 78.60 | 14.62 | |
Scan rate 3 cm/s | Forward | 1.05 | 16.62 | 65.83 | 11.52 |
Reverse | 1.05 | 16.91 | 72.08 | 12.76 | |
Scan rate 2 cm/s | Forward | 1.07 | 17.33 | 62.50 | 11.57 |
Reverse | 1.07 | 17.78 | 68.72 | 13.11 | |
Scan rate 1 cm/s | Forward | 1.07 | 17.16 | 62.26 | 11.40 |
Reverse | 1.07 | 17.53 | 66.26 | 12.41 | |
Scan rate 0.5 cm/s | Forward | 1.05 | 16.88 | 53.01 | 9.36 |
Reverse | 1.04 | 17.25 | 56.20 | 10.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, C.-Y.; Huang, J.-Z.; Chen, M.-H.; Hsu, C.-C.; Wu, C.-I.; Cheng, I.-C.; Chen, J.-Z. The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells. Polymers 2021, 13, 4020. https://doi.org/10.3390/polym13224020
Shih C-Y, Huang J-Z, Chen M-H, Hsu C-C, Wu C-I, Cheng I-C, Chen J-Z. The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells. Polymers. 2021; 13(22):4020. https://doi.org/10.3390/polym13224020
Chicago/Turabian StyleShih, Chung-Yueh, Jian-Zhi Huang, Mei-Hsin Chen, Cheng-Che Hsu, Chih-I Wu, I-Chun Cheng, and Jian-Zhang Chen. 2021. "The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells" Polymers 13, no. 22: 4020. https://doi.org/10.3390/polym13224020
APA StyleShih, C.-Y., Huang, J.-Z., Chen, M.-H., Hsu, C.-C., Wu, C.-I., Cheng, I.-C., & Chen, J.-Z. (2021). The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells. Polymers, 13(22), 4020. https://doi.org/10.3390/polym13224020