Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, R.; Saucedo, I.; Nnez, A.; Avila, M.; Guibal, E. Cadmium extraction from hydrochloric acid solutions using Amberlite XAD-7 impregnated with Cyanex 921 (tri-octyl phosphine oxide). React. Funct. Polym. 2008, 68, 557–571. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhao, Z.; Dong, Y.; Sun, X. The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Sep. Purif. Technol. 2015, 151, 303. [Google Scholar] [CrossRef]
- De Jong, N.; Draye, M.; Favre-Réguillon, A.; LeBuzit, G.; Cote, G.; Foos, J. Lanthanum (III) and gadolinium (III) separation by cloud point extraction. J. Colloid Interf. Sci. 2005, 291, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, H.; Inoue, H.; Hiraide, M. Separation of Gd–humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-SephadexA-25 for the fractionation analysis. Talanta 2014, 128, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Croft, C.F.; Inês, M.; Almeida, G.S.; Cattrall, R.W.; Kolev, S.D. Separation of lanthanum (III), gadolinium (III) and ytterbium (III) from sulfuric acid solutions by using a polymer inclusion membrane. J. Membr. Sci. 2018, 545, 259–265. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Li, D.; Li, W. Extraction of rare earths (III) from nitrate medium with with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5. Sep. Sci. Technol. 2006, 41, 3047–3063. [Google Scholar] [CrossRef]
- Davoodi-Nasab, P.; Rahbar-Kelishami, A.; Safdari, J.; Abolghasemi, H. Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions. J. Mol. Liq. 2018, 262, 97–103. [Google Scholar] [CrossRef]
- Costa, A.F.; Van Der Pol, C.B.; Maralani, P.J.; McInnes, M.D.; Shewchuk, J.R.; Verma, R.; Hurrell, C.; Schieda, N. Gadolinium deposition in the brain: A systematic review of existing guidelines and policy statement issued by the canadian association of radiologists. Can. Assoc. Radiol. J. 2018, 69, 373–382. [Google Scholar] [CrossRef]
- Abujudeh, H.H.; Kosaraju, V.K.; Kaewlai, R. Acute adverse reactions to gadopentetate dimeglumine and gadobenate dimeglumine: Experience with 32,659 injections. Am. J. Roentgenol. 2010, 194, 430–434. [Google Scholar] [CrossRef]
- Dalle, H.M.; de Mattos, J.R.L.; Dias, M.S. Enriched gadolinium burnable poison for PWR fuel—Monte Carlo burnup simulations of reactivity, Chapter 4. In Current Research in Nuclear Reactor Technology in Brazil and Worldwide; Intech Publishers: Rijeka, Croatia, 2013; pp. 73–89. [Google Scholar]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: Evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015, 276, 228–232. [Google Scholar] [CrossRef]
- Murata, N.; Gonzalez-Cuyar, L.F.; Murata, K. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Investig. Radiol. 2016, 51, 447–453. [Google Scholar] [CrossRef]
- Elsofany, E. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J. Hazard. Mater. 2008, 153, 948–954. [Google Scholar] [CrossRef]
- Rufus, A.; Kumar, P.S.; Jeena, K.; Velmurugan, S. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors. J. Hazard. Mater. 2018, 342, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Tadjarodi, A.; Jalalat, V.; Zare-Dorabei, R. Adsorption of La (III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica. Mater. Res. Bull. 2015, 61, 113–119. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Jalalat, V.; Tadjarodi, A. Central composite design optimization of Ce (III) ion removal from aqueous solution using modified SBA-15 mesoporous silica. New J. Chem. 2016, 40, 5128–5134. [Google Scholar] [CrossRef]
- Dashtian, K.; Zare-Dorabei, R. Synthesis and characterization of functionalized mesoporous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce (III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J. Colloid Interface Sci. 2017, 494, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Serbanescu, O.S.; Pandele, A.; Miculescu, F.; Voicu, Ş.I. Synthesis and characterization of cellulose acetate membranes with self-indicating properties by changing the membrane surface color for separation of Gd (III). Coatings 2020, 10, 468. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymeric membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Thakur, V.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 247, 116683. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in applications of cellulose derivatives-based composite membranes with hydroxyapatite. Materials 2020, 13, 2481. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Cellulose composites with graphene for tissue engineering applications. Materials 2020, 13, 5347. [Google Scholar] [CrossRef]
- Pandele, A.M.; Constantinescu, A.; Radu, I.C.; Miculescu, F.; Voicu, S.I.; Ciocan, L.T. Synthesis and characterization of PLA microstructured hydroxyapatite composite films. Materials 2020, 13, 274. [Google Scholar] [CrossRef]
- Muhulet, A.; Tuncel, C.; Miculescu, F.; Pandele, A.M.; Bobirica, C.; Orbeci, C.; Bobirica, L.; Palla Papavlu, A.; Voicu, S.I. Synthesis and characterization of polysulfone-TiO2 doped MWCNT composite membranes by sonochemical method. Appl. Phys. A 2020, 126, 233. [Google Scholar] [CrossRef]
- Chiulan, I.; Heggset, E.B.; Voicu, S.I.; Chinga-Carrasco, G. Photopolymerization of bio-based polymers in a biomedical engineering perspective. Biomacromolecules 2021, 22, 1795–1814. [Google Scholar] [CrossRef]
- Voicu, S.I.; Dobrica, A.; Sava, S.; Ivan, A.; Naftanaila, L. Cationic surfactants-controlled geometry and dimensions of polymeric membrane pores. J. Optoelectron. Adv. Mater. 2012, 14, 923–928. [Google Scholar]
- Raicopol, M.D.; Andronescu, C.; Voicu, S.I.; Vasile, E.; Pandele, A.M. Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydr. Polym. 2019, 214, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Voicu, S.I.; Pandele, M.A.; Vasile, E.; Rughinis, R.; Crica, L.; Pilan, L.; Ionita, M. The impact of sonication time through polysulfone-graphene oxide composite films properties. Dig. J. Nanomater. Bios. 2013, 8, 1389–1394. [Google Scholar]
- Rana, A.K.; Gupta, V.K.; Saini, A.K.; Voicu, S.I.; Abdellattifaand, M.H.; Thakur, V.K. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination 2021, 520, 115359. [Google Scholar] [CrossRef]
- Voicu, S.I.; Thakur, V.K. Graphene-based composite membranes for nanofiltration: Performances and future perspectives. Emerg. Mater. 2021, 1–13. [Google Scholar] [CrossRef]
- Pandele, A.M.; Iovu, H.; Orbeci, C.; Tuncel, C.; Miculescu, F.; Nicolescu, A.; Deleanu, C.; Voicu, S.I. Surface Modified Cellulose Acetate Membranes for the Reactive Retention of Tetracycline. Sep. Purif. Technol. 2020, 249, 117145. [Google Scholar] [CrossRef]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Dumitriu, C.; Voicu, S.I.; Muhulet, A.; Nechifor, G.; Popescu, S.; Ungureanu, C.; Carja, A.; Miculescu, F.; Trusca, R.; Pirvu, C. Cellulose acetate-titanium dioxide nanotubes membrane fraxiparinized through polydopamine. Carbohydr. Polym. 2018, 181, 215–223. [Google Scholar] [CrossRef]
- Mal, D.; Puspalata, R.; Rangarajan, S.; Velmurugan, S. Effect of gadolinium nitrate concentration on molecular product yield during gamma irradiation and on corrosion of stainless steel. Radiat. Phys. Chem. 2017, 138, 1–8. [Google Scholar] [CrossRef]
- Tonoike, K.; Miyoshi, Y.; Uchiyama, G. Benchmark critical experiments of a heterogeneous system of uranium fuel rods and uranium solution poisoned with gadolinium, and application of their results to JACS validation. J. Nucl. Sci. Technol. 2011, 48, 1118–1128. [Google Scholar] [CrossRef]
- Smolen, G.R.; Lloyd, R.C.; Matsumoto, T. Criticality data and validation studies of mixed-oxide fuel pin arrays in Pu+U+Gd nitrate. Nucl. Technol. 1994, 107, 340–355. [Google Scholar] [CrossRef]
- Bierman, S.R. Reactivity measurements under conditions typical to fuel element dissolution. Nucl. Technol. 1976, 31, 339–347. [Google Scholar] [CrossRef]
- Pandele, A.M.; Neacsu, P.; Cimpean, A.; Staras, A.; Miculescu, M.; Iordache, A.; Voicu, S.I.; Thakur, V.; Toader, O. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl. Surf. Sci. 2018, 438, 2–13. [Google Scholar] [CrossRef]
- Voicu, S.I.; Condruz, R.M.; Mitran, V.; Cimpean, A.; Miculescu, F.; Andronescu, C.; Miculescu, M.; Thakur, V.K. Sericin covalent immobilization onto cellulose acetate membranes. ACS Sustain. Chem. Eng. 2016, 4, 1765–1774. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 2020, 59, 5002–5006. [Google Scholar] [CrossRef]
- ISO. 15472:2010 Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Voicu, S.I.; Thakur, V.K. Aminopropyl-triethoxysilane as a linker for functional cellulose-based materials: New Horizons and Future Challenges. Curr. Opin. Green Sustain. Chem. 2020, 30, 100480. [Google Scholar] [CrossRef]
- Zirak, M.; Abdollahiyan, A.; Eftekhari-Sis, B.; Saraei, M. Carboxymethyl cellulose coated Fe3O4@SiO2 core–shell magnetic nanoparticles for methylene blue removal: Equilibrium, kinetic, and thermodynamic studies. Cellulose 2018, 25, 503–515. [Google Scholar] [CrossRef]
- Jonoobi, M.; Ashori, A.; Siracusa, V. Characterization and properties of polyethersulfone/modified cellulose nanocrystals nanocomposite membranes. Polym. Test. 2019, 76, 333–339. [Google Scholar] [CrossRef]
- Bian, P.-W.; Sun, B.-Q.; Huang, L.-Q. Modification of polyvinyl alcohol/microfibrillated-cellulose films by ethylene triethoxysilane. J. Eng. Fiber. Fabr. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Ma, Y.L.; Cao, C.J.; Hou, C.M. Preparation of super-hydrophobic cotton fabric with crosslinkable fluoropolymer. Lect. Notes Electr. Eng. 2018, 477, 955–962. [Google Scholar]
- Yang, J.; Pu, Y.; Miao, D.G.; Ning, X. Fabrication of durably superhydrophobic cotton fabrics by atmospheric pressure plasma treatment with a siloxane precursor. Polymers 2018, 10, 460. [Google Scholar] [CrossRef]
- Rafieian, F.; Jonoobi, M.; Yu, Q. A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 2019, 26, 3359–3373. [Google Scholar] [CrossRef]
- Ferreira, F.J.L.; Silva, L.S.; da Silva, M.S.; Osajima, J.A.; Meneguin, A.B.; Santagneli, S.H.; Barud, H.S.; Bezerra, R.D.S.; Silva-Filho, E.C. Understanding kinetics and thermodynamics of the interactions between amitriptyline or eosin yellow and aminosilane-modified cellulose. Carbohydr. Polym. 2019, 225, 115246. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.J.; Nyuk-Ting, N.; Nor, N.S.M.; Baig, U.; Ibrahim, W.A.W.; Sanagi, M.M.; Keyon, A.S.A. Removal of rhodamine 6G and crystal violet dyes from water sample using cellulose acetate-(3-aminopropyl)-triethoxysilane sorbent. AIP Conf. Proc. 2019, 2155, 020013. [Google Scholar]
- Gao, X.; Xu, Y.; Ma, M.; Rao, K.; Wang, Z. Simultaneous passive sampling of hydrophilic and hydrophobic emerging organic contaminants in water. Ecotoxicol. Environ. Saf. 2019, 178, 25–32. [Google Scholar] [CrossRef]
- Velu, S.; Muruganandam, L. Development of PES membranes for separation of metal ions: Effect of polymer composition. Int. J. Chem. Sci. 2011, 9, 757–768. [Google Scholar]
- Vinnikova, N.; Tanny, G.B. Transport of ions and water in sulfonated polysulfone membranes. ACS Symp. Ser. 1981, 153, 351–365. [Google Scholar]
- Jitsuhara, I.; Kimura, S. Structure and properties of charged ultrafiltration membranes made of sulfonated polysulfone. J. Chem. Eng. Jpn. 1983, 16, 389–393. [Google Scholar] [CrossRef][Green Version]
- Malaisamy, R.; Mahendran, R.; Mohan, D.; Rajendran, M.; Mohan, V. Cellulose acetate and sulfonated polysulfone blend ultrafiltration membranes. I. Preparation and characterization. J. Appl. Polym. Sci. 2002, 86, 1749–1761. [Google Scholar] [CrossRef]
- Filimon, A.; Avram, E.; Stoica, I. Rheological and morphological characteristics of multicomponent polysulfone/poly(vinyl alcohol) systems. Polym. Int. 2014, 63, 1856–1868. [Google Scholar] [CrossRef]
- Filimon, A.; Avram, E.; Dunca, S.; Stoica, I.; Ioan, S. Surface properties and antibacterial activity of quaternized polysulfones. J. Appl. Polym. Sci. 2009, 112, 1808–1816. [Google Scholar] [CrossRef]
- Filimon, A.; Marinica Albu, R.; Stoica, I.; Avram, E. Blends based on ionic polysulfones with improved conformational and microstructural characteristics: Perspectives for biomedical applications. Compos. B 2016, 93, 1–11. [Google Scholar] [CrossRef]
Sample | C 1s [%] | O 1s [%] | N 1s [%] | Si 2p [%] |
---|---|---|---|---|
CA | 45.16 | 44.80 | 6.86 | - |
CA/APTES | 64.96 | 20.49 | 5.91 | 8.64 |
CA/APTES/GA | 70.31 | 20.27 | 4.44 | 4.98 |
CA/APTES/CE | 63.27 | 33.21 | - | 2.83 |
Sample Name | Wt. (%) | DTG (°C) | Td5% (°C) |
---|---|---|---|
CA | 89 ± 1 | 433 ± 1 | 204 ± 3 |
CA/APTES | 86 ± 1 | 431 ± 1 | 209 ± 3 |
CA/APTES/GA | 88 ± 1 | 430 ± 1 | 353 ± 3 |
CA/APTES/CE | 100 ± 1 | 433 ± 1 | 216 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbanescu, O.S.; Pandele, A.M.; Oprea, M.; Semenescu, A.; Thakur, V.K.; Voicu, S.I. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers 2021, 13, 3978. https://doi.org/10.3390/polym13223978
Serbanescu OS, Pandele AM, Oprea M, Semenescu A, Thakur VK, Voicu SI. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers. 2021; 13(22):3978. https://doi.org/10.3390/polym13223978
Chicago/Turabian StyleSerbanescu, Oana Steluta, Andreea Madalina Pandele, Madalina Oprea, Augustin Semenescu, Vijay Kumar Thakur, and Stefan Ioan Voicu. 2021. "Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III)" Polymers 13, no. 22: 3978. https://doi.org/10.3390/polym13223978
APA StyleSerbanescu, O. S., Pandele, A. M., Oprea, M., Semenescu, A., Thakur, V. K., & Voicu, S. I. (2021). Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers, 13(22), 3978. https://doi.org/10.3390/polym13223978