Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Set-Up Design and Sample Preparation
3.2. Annealing Experiments
4. Discussion
4.1. Polymer Film Morphology
4.2. Electrochemical Effects
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bates, C.M.; Bates, F.S. 50th anniversary perspective: Block polymers—Pure potential. Macromolecules 2017, 50, 3–22. [Google Scholar] [CrossRef]
- Lazzari, M.; Torneiro, M. A global view on block copolymers. Polymers 2020, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Liu, G.L. Block copolymers for supercapacitors, dielectric capacitors and batteries. J. Phys. Condens. Matter 2019, 31, 233001. [Google Scholar] [CrossRef]
- You, I.; Kong, M.; Jeong, U. Block copolymer elastomers for stretchable electronics. Acc. Chem. Res. 2019, 52, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, V.D.; Jones, D.J. Advances toward the effective use of block copolymers as organic photovoltaic active layers. Polym. Chem. 2018, 9, 795–814. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Kaneti, Y.V.; Hou, D.; Yamauchi, Y.; Mai, Y.Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736. [Google Scholar] [CrossRef]
- Radjabian, M.; Abetz, V. Advanced porous polymer membranes from self-assembling block copolymers. Prog. Polym. Sci. 2020, 102, 101219. [Google Scholar] [CrossRef]
- Chidanguro, T.; Ghimire, E.; Liu, C.H.; Simon, Y.C. Polymersomes: Breaking the glass ceiling? Small 2018, 14, 1802734. [Google Scholar] [CrossRef]
- Demazeau, M.; Gibot, L.; Mingotaud, A.F.; Vicendo, P.; Roux, C.; Lonetti, B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J. Nanotechnol. 2020, 11, 180–212. [Google Scholar] [CrossRef]
- Jazani, A.M.; Oh, J.K. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym. Chem. 2020, 11, 2934–2954. [Google Scholar] [CrossRef]
- Epps, T.H.; O’Reilly, R.K. Block copolymers: Controlling nanostructure to generate functional materials—Synthesis, characterization, and engineering. Chem. Sci. 2016, 7, 1674–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, C.M.; Maher, M.J.; Janes, D.W.; Ellison, C.J.; Willson, C.G. Block copolymer lithography. Macromolecules 2014, 47, 2–12. [Google Scholar] [CrossRef]
- Luo, M.; Epps, T.H. Directed block copolymer thin film self-assembly: Emerging trends in nanopattern fabrication. Macromolecules 2013, 46, 7567–7579. [Google Scholar] [CrossRef]
- Hu, H.; Gopinadhan, M.; Osuji, C.O. Directed self-assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867–3889. [Google Scholar] [CrossRef]
- Majewski, P.W.; Yager, K.G. Rapid ordering of block copolymer thin films. J. Phys. Condens. Matter 2016, 28, 403002. [Google Scholar] [CrossRef] [Green Version]
- Gotrik, K.W.; Hannon, A.F.; Son, J.G.; Keller, B.; Alexander-Katz, A.; Ross, C.A. Morphology control in block copolymer films using mixed solvent vapors. ACS Nano 2012, 6, 8052–8059. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent vapor annealing of block polymer thin films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Bhoje Gowd, E.; Koga, T.; Endoh, M.K.; Kumar, K.; Stamm, M. Pathways of cylindrical orientations in PS-b-P4VP diblock copolymer thin films upon solvent vapor annealing. Soft Matter 2014, 10, 7753–7761. [Google Scholar] [CrossRef] [Green Version]
- Posselt, D.; Zhang, J.; Smilgies, D.-M.; Berezkin, A.V.; Potemkin, I.I.; Papadakis, C.M. Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing. Prog. Polym. Sci. 2017, 66, 80–115. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Müller, M. Directed self-assembly of block copolymers by chemical or topographical guiding patterns: Optimizing molecular architecture, thin-film properties, and kinetics. Prog. Polym. Sci. 2016, 54–55, 47–75. [Google Scholar] [CrossRef]
- Ji, S.; Wan, L.; Liu, C.-C.; Nealey, P.F. Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication. Prog. Polym. Sci. 2016, 54–55, 76–127. [Google Scholar] [CrossRef]
- Halevi, A.; Halivni, S.; Oded, M.; Müller, A.H.E.; Banin, U.; Shenhar, R. Co-assembly of A-B diblock copolymers with B′-type nanoparticles in thin films: Effect of copolymer composition and nanoparticle shape. Macromolecules 2014, 47, 3022–3032. [Google Scholar] [CrossRef]
- Sarkar, B.; Alexandridis, P. Block copolymer-nanoparticle composites: Structure, functional properties, and processing. Prog. Polym. Sci. 2015, 40, 33–62. [Google Scholar] [CrossRef]
- Osipov, M.A.; Gorkunov, M.V.; Berezkin, A.V.; Kudryavtsev, Y.V. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles. Phys. Rev. E 2018, 97, 042706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.X.; Zhao, Y.B.; Chen, A.H. Self-assembly of liquid-crystalline block copolymers in thin films: Control of microdomain orientation. Polym. J. 2018, 50, 671–678. [Google Scholar] [CrossRef]
- Kim, S.Y.; Nunns, A.; Gwyther, J.; Davis, R.L.; Manners, I.; Chaikin, P.M.; Register, R.A. Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett. 2014, 14, 5698–5705. [Google Scholar] [CrossRef] [Green Version]
- Nowak, S.R.; Yager, K.G. Photothermally directed assembly of block copolymers. Adv. Mater. Interfaces 2019, 7, 1901679. [Google Scholar] [CrossRef]
- Wang, H.S.; Kim, K.H.; Bang, J. Thermal approaches to perpendicular block copolymer microdomains in thin films: A review and appraisal. Macromol. Rapid Commun. 2019, 40, 1800728. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.D.; Millett, P.C. Numerical simulations of directed self-assembly in diblock copolymer films using zone annealing and pattern templating. Sci. Rep. 2017, 7, 5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leniart, A.A.; Pula, P.; Sitkiewicz, A.; Majewski, P.W. Macroscopic alignment of block copolymers on silicon substrates by laser annealing. ACS Nano 2020, 14, 4805–4815. [Google Scholar] [CrossRef]
- Pester, C.W.; Liedel, C.; Ruppel, M.; Böker, A. Block copolymers in electric fields. Prog. Polym. Sci. 2017, 64, 182–214. [Google Scholar] [CrossRef]
- Wakayama, H.; Yonekura, H.; Harada, M. Effects of metal loading and magnetic field strength on alignment of noncrystalline block copolymers doped with metal complexes. J. Polym. Res. 2014, 21, 488. [Google Scholar] [CrossRef] [Green Version]
- Amundson, K.; Helfand, E.; Davis, D.D.; Quan, X.; Patel, S.S. Effect of an electric field on block copolymer microstructure. Macromolecules 1991, 24, 6546–6548. [Google Scholar] [CrossRef]
- Amundson, K.; Helfand, E.; Quan, X.; Smith, S.D. Alignment of lamellar block copolymer microstructure in an electric field. 1. Alignment kinetics. Macromolecules 1993, 26, 2698–2703. [Google Scholar] [CrossRef]
- Amundson, K.; Helfand, E.; Quan, X.; Hudson, S.D.; Smith, S.D. Alignment of lamellar block copolymer microstructure in an electric field. 2. Mechanisms of alignment. Macromolecules 1994, 27, 6559–6570. [Google Scholar] [CrossRef]
- Morkved, T.L.; Lu, M.; Urbas, A.M.; Ehrics, E.E.; Jaeger, H.M.; Mansky, P.; Russell, T.P. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 1996, 273, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Schäffer, E.; Thurn-Albrecht, T.; Russell, T.P.; Steiner, U. Electrically induced structure formation and pattern transfer. Nature 2000, 403, 874–877. [Google Scholar] [CrossRef]
- Böker, A.; Knoll, A.; Elbs, H.; Abetz, V.; Müller, A.H.E.; Krausch, G. Large scale domain alignment of a block copolymer from solution using electric fields. Macromolecules 2002, 35, 1319–1325. [Google Scholar] [CrossRef]
- Kyrylyuk, A.V.; Zvelindovsky, A.V.; Sevink, G.J.A.; Fraaije, J.G.E.M. Lamellar alignment of diblock copolymers in an electric field. Macromolecules 2002, 35, 1473–1476. [Google Scholar] [CrossRef]
- Böker, A.; Elbs, H.; Hänsel, H.; Knoll, A.; Ludwigs, S.; Zettl, H.; Zvelindovsky, A.V.; Sevink, G.J.A.; Urban, V.; Abetz, V.; et al. Electric field induced alignment of concentrated block copolymer solutions. Macromolecules 2003, 36, 8078–8087. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, Y.; Gido, S.P.; Russell, T.P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 2004, 37, 2625–2629. [Google Scholar] [CrossRef]
- Xu, T.; Zvelindovsky, A.V.; Sevink, G.J.A.; Lyakhova, K.S.; Jinnai, H.; Russell, T.P. Electric field alignment of asymmetric diblock copolymer thin films. Macromolecules 2005, 38, 10788–10798. [Google Scholar] [CrossRef]
- Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Böker, A. Electric field alignment of a block copolymer nanopattern: Direct observation of the microscopic mechanism. ACS Nano 2009, 3, 1091–1096. [Google Scholar] [CrossRef]
- Liedel, C.; Schindler, K.A.; Pavan, M.J.; Lewin, C.; Pester, C.W.; Ruppel, M.; Urban, V.S.; Shenhar, R.; Böker, A. Electric-field-induced alignment of block copolymer/nanoparticle blends. Small 2013, 9, 3276–3281. [Google Scholar] [CrossRef]
- Bae, J.; Park, S.J.; Kwon, O.S.; Jang, J. The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field. J. Mater. Sci. 2014, 49, 4323–4331. [Google Scholar] [CrossRef]
- Liedel, C.; Lewin, C.; Tsarkova, L.; Böker, A. Reversible switching of block copolymer nanopatterns by orthogonal electric fields. Small 2015, 11, 6058–6064. [Google Scholar] [CrossRef]
- Jeon, H.U.; Jin, H.M.; Kim, J.Y.; Cha, S.K.; Mun, J.H.; Lee, K.E.; Oh, J.J.; Yun, T.; Kim, J.S.; Kim, S.O. Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns. Mol. Syst. Des. Eng. 2017, 2, 560–566. [Google Scholar] [CrossRef]
- Dreyer, O.; Wu, M.-L.; Radjabian, M.; Abetz, C.; Abetz, V. Structure of nonsolvent-quenched block copolymer solutions after exposure to electric fields during solvent evaporation. Adv. Mater. Interfaces 2019, 6, 1900646. [Google Scholar] [CrossRef]
- Gurovich, E. On microphase separation of block copolymers in an electric field: Four universal classes. Macromolecules 1994, 27, 7339–7362. [Google Scholar] [CrossRef]
- Pereira, G.G.; Williams, D.R.M. Diblock copolymer melts in electric fields: The transition from parallel to perpendicular alignment using a capacitor analogy. Macromolecules 1999, 32, 8115–8120. [Google Scholar] [CrossRef]
- Ashok, B.; Muthukumar, M.; Russell, T.P. Confined thin film diblock copolymer in the presence of an electric field. J. Chem. Phys. 2001, 115, 1559–1564. [Google Scholar] [CrossRef]
- Tsori, Y.; Andelman, D. Thin film diblock copolymers in electric field: Transition from perpendicular to parallel lamellae. Macromolecules 2002, 35, 5161–5170. [Google Scholar] [CrossRef] [Green Version]
- Lyakhova, K.S.; Zvelindovsky, A.V.; Sevink, G.J.A. Kinetic pathways of order-to-order phase transitions in block copolymer films under an electric field. Macromolecules 2006, 39, 3024–3037. [Google Scholar] [CrossRef]
- Matsen, M.W. Electric field alignment in thin films of cylinder-forming diblock copolymer. Macromolecules 2006, 39, 5512–5520. [Google Scholar] [CrossRef]
- Harrach, M.F.; Heckmann, M.; Drossel, B. Strong stretching theory for diblock copolymers in thin films under application of electric fields. J. Chem. Phys. 2012, 137, 044908. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Ji, Y.; He, L.; Li, S. Phase diagrams of diblock copolymers in electric fields: A self-consistent field theory study. Phys. Chem. Chem Phys. 2016, 18, 10309–10319. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ankit, K.; Reiter, A.; Selzer, M.; Nestler, B. Electric-field-induced lamellar to hexagonally perforated lamellar transition in diblock copolymer thin films: Kinetic pathways. Phys. Chem. Chem Phys. 2016, 18, 25609–25620. [Google Scholar] [CrossRef]
- Kan, D.; He, X. Tuning phase structures of a symmetrical diblock copolymer with a patterned electric field. Soft Matter 2016, 12, 4449–4456. [Google Scholar] [CrossRef]
- Martin, J.M.; Li, W.; Delaney, K.T.; Fredrickson, G.H. SCFT study of diblock copolymer melts in electric fields: Selective stabilization of orthorhombic Fddd network phase. Macromolecules 2018, 51, 3369–3378. [Google Scholar] [CrossRef]
- Zheng, B.; Man, X.; Ou-Yang, Z.-C.; Schick, M.; Andelman, D. Orienting thin films of lamellar block copolymers: The combined effect of mobile ions and electric field. Macromolecules 2018, 51, 7881–7892. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K. Prediction of electric field effects on defect-free self-assembled nano-patterning of block copolymer. J. Nanosci. Nanotechnol. 2016, 16, 2706–2709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, R.; Kan, D.; He, X. Molecular dynamics simulation of electric-field-induced self-assembly of diblock copolymers. J. Chem. Phys. 2012, 144, 234901. [Google Scholar] [CrossRef]
- Welling, U.; Müller, M. Ordering block copolymers with structured electrodes. Soft Matter 2017, 13, 486–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, A.; Ai, W.; Rond, J.; Staabs, J.; Steinberg, C.; Papenheim, M.; Scheer, H.-C.; Tormen, M.; Cian, A.; Zajadacz, J.; et al. Electrically-assisted nanoimprint of block copolymers. J. Vac. Sci. Technol. B 2019, 37, 011601. [Google Scholar] [CrossRef]
- Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Böker, A.; Krausch, G. Large scale alignment of a lamellar block copolymer thin film via electric fields: A time-resolved SFM study. Soft Matter 2006, 2, 1089–1094. [Google Scholar] [CrossRef]
- Olszowka, V.; Tsarkova, L.; Böker, A. 3-Dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter 2009, 5, 812–819. [Google Scholar] [CrossRef]
- Feng, J.; Ruckenstein, E. Long-range ordered structures in diblock copolymer melts induced by combined external fields. J. Chem. Phys. 2004, 121, 1609–1625. [Google Scholar] [CrossRef]
- Zvelindovsky, A.V.; Sevink, G.J.A. Orthogonal fields: A path to long-range three-dimensional order in block copolymers. J. Chem. Phys. 2005, 123, 074903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Q.; Sibener, S.J. Electric-field-induced control and switching of block copolymer domain orientations in nanoconfined channel architectures. J. Phys. Chem. C 2014, 118, 13752–13756. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Tu, C.-W.; Huang, Y.-W.; Kuo, S.-W.; Lee, R.-H.; Liu, Y.-T.; Hsueh, H.-Y.; Aimi, J.; Huang, C.-F. Synthesis of poly(styrene)-b-poly(2-vinyl pyridine) four-arm star block copolymers via ATRP and their self-assembly behaviors. Polymer 2021, 213, 123212. [Google Scholar] [CrossRef]
- Kim, H.; Arras, M.M.L.; Mahalik, J.P.; Wang, W.; Yu, D.M.; Chernyy, S.; Goswamy, M.; Kumar, R.; Sumpter, B.G.; Hong, K.; et al. Studies on the 3-lamellar morphology of miktoarm terpolymers. Macromolecules 2018, 51, 7491–7499. [Google Scholar] [CrossRef]
- Zha, W.; Han, C.D.; Lee, D.H.; Han, S.H.; Kim, J.K.; Kang, J.H.; Park, C. Origin of the difference in order–disorder transition temperature between polystyrene–block–poly(2-vinylpyridine) and polystyrene–block–poly(4-vinylpyridine) copolymers. Macromolecules 2007, 40, 2109–2119. [Google Scholar] [CrossRef]
- Kennemur, J.G. Poly(vinylpyridine) segments in block copolymers: Synthesis, self-assembly, and versatility. Macromolecules 2019, 52, 1354–1370. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, W.; Hong, S.; Chen, Z.; Liu, X.; Xiao, S.; Coughlin, E.B.; Russell, T.P. Using block copolymer architecture to achieve sub-10 nm periods. Polymer 2017, 121, 297–303. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Z.; Zhang, W.; Choi, J.; Huang, C.; Jeong, G.; Coughlin, E.B.; Hsu, Y.; Yang, X.M.; Lee, K.Y.; et al. Directed self-assembly of poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer with sub-15 nm spacing line patterns using a nanoimprinted photoresist template. Adv. Mater. 2015, 27, 4364–4370. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.R.K.; Snyder, B.; El-Sayed, M.A. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 2012, 28, 9807–9815. [Google Scholar] [CrossRef]
- Derikov, Y.I.; Shandryuk, G.A.; Talroze, R.V.; Ezhov, A.A.; Kudryavtsev, Y.V. Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers. Beilstein J. Nanotechnol. 2018, 9, 616–627. [Google Scholar] [CrossRef] [Green Version]
- Derikov, Y.I.; Abetz, C.; Shandryuk, G.A.; Talroze, R.V.; Ezhov, A.A.; Abetz, V.; Kudryavtsev, Y.V.; Osipov, M.A. Stabilization of gold nanospheres and nanorods in diblock copolymers of styrene and vinylpyridine. Polym. Sci. Ser. C 2018, 60, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Derikov, Y.I.; Abetz, C.; Karpov, O.N.; Shandryuk, G.A.; Ezhov, A.A.; Kudryavtsev, Y.V.; Abetz, V. Polymeric and low-molecular stabilizers for Au nanoparticles in a diblock copolymer matrix. Polym. Sci. Ser. C 2018, 60 (Suppl. 1), 240–250. [Google Scholar] [CrossRef]
- Kumar, L.; Horechyy, A.; Bittrich, E.; Nandan, B.; Uhlmann, P.; Fery, A. Amphiphilic block copolymer micelles in selective solvents: The effect of solvent selectivity on micelle formation. Polymers 2019, 11, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plyler, E.K.; Mulliken, R.S. Molecular complexes and their spectra. IX. Infrared absorption by iodine in its pyridine complexes and in benzene. J. Am. Chem. Soc. 1959, 81, 823–826. [Google Scholar] [CrossRef]
- Grabowski, C.A.; Fillery, S.P.; Westing, N.M.; Chi, C.; Meth, J.S.; Durstock, M.F.; Vaia, R.A. Dielectric breakdown in silica-amorphous polymer nanocomposite films: The role of the polymer matrix. ACS Appl. Mater. Interfaces 2013, 5, 5486–5492. [Google Scholar] [CrossRef]
- Toor, A.; So, H.; Pisano, A.P. Improved dielectric properties of polyvinylidene fluoride nanocomposite embedded with poly(vinylpyrrolidone)-coated gold nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 6369–6375. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, Q.; Yang, H. Ultra-fine gold nanoparticles enabled Au-BST NF/PVTC composites to have excellent energy storage performance. ACS Appl. Energy Mater. 2021, 4, 6511–6519. [Google Scholar] [CrossRef]
- Toor, A.; So, H.; Pisano, A.P. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites. Appl. Surf. Sci. 2017, 414, 373–379. [Google Scholar] [CrossRef]
- Tsangaris, G.M.; Psarras, G.C.; Kouloumbi, N. Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. 1998, 33, 2027–2037. [Google Scholar] [CrossRef]
- Markel, V.A. Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A 2016, 33, 1244–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsori, Y. Colloquium: Phase transitions in polymers and liquids in electric fields. Rev. Mod. Phys. 2009, 81, 1471–1494. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.Q.; Li, J.; Yang, J.P.; Cheng, P.P.; Zhao, J.; Lee, S.T.; Li, Y.Q.; Tang, J.X. Enhanced performance in polymer photovoltaic cells with chloroform treated indium tin oxide anode modification. Appl. Phys. Lett. 2011, 98, 253303. [Google Scholar] [CrossRef] [Green Version]
- Scholten, M.; van den Meerakker, J.E.A.M. On the mechanism of ITO etching: The specificity of halogen acids. J. Electrochem. Soc. 1993, 140, 471–475. [Google Scholar] [CrossRef]
- Oh, S.; Jung, H.; Kim, Y.-H.; Kim, M.; Yoo, E.; Choi, Y.J.; Yoon, T.-S.; Lee, H.H. Characterization of ITO etching by spontaneously evaporated fume of hydrogen chloride. Microelectron. Eng. 2013, 103, 173–176. [Google Scholar] [CrossRef]
- Chen, G.; Betterton, E.A.; Arnold, R.G.; Ela, W.P. Electrolytic reduction of trichloroethylene and chloroform at a Pt- or Pd-coated ceramic cathode. J. Appl. Electrochem. 2003, 33, 161–169. [Google Scholar] [CrossRef]
- Brudzisz, A.M.; Brzózka, A.; Sulka, G.D. Effect of the supporting electrolyte on the chloroform reduction at a silver electrode in aqueous solutions. Molecules 2021, 26, 525. [Google Scholar] [CrossRef] [PubMed]
- Noriyuki, S.; Kohjiro, H.; Tadayoshi, S. Reductive electrochemical decomposition of chloroform on metal electrodes. Chem. Lett. 1997, 26, 131–132. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merekalov, A.S.; Derikov, Y.I.; Artemov, V.V.; Ezhov, A.A.; Kudryavtsev, Y.V. Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field. Polymers 2021, 13, 3959. https://doi.org/10.3390/polym13223959
Merekalov AS, Derikov YI, Artemov VV, Ezhov AA, Kudryavtsev YV. Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field. Polymers. 2021; 13(22):3959. https://doi.org/10.3390/polym13223959
Chicago/Turabian StyleMerekalov, Alexey S., Yaroslav I. Derikov, Vladimir V. Artemov, Alexander A. Ezhov, and Yaroslav V. Kudryavtsev. 2021. "Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field" Polymers 13, no. 22: 3959. https://doi.org/10.3390/polym13223959