Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Braided Yarns
2.3. Scanning Electron Microscopy (SEM) Observation
2.4. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA)
2.5. Fourier Transform Infrared (FTIR)
2.6. Monotonic Tensile Tests
2.7. Creep Tensile Tests
2.8. Relaxation Tensile Tests
2.9. DMA
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM) Observation
3.2. TGA
3.3. DTA
3.4. FTIR
3.5. Monotonic Tests
3.6. Creep Tensile Tests
3.7. Relaxation Tensile Tests
3.8. DMA Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanputte, C.; Russo, A.; Seeley, R.; Stephens, T. Seeley’s Anatomy & Physiology, 12th ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Petersik, A.; Homeier, A.; Hoare, S.G.; Von Oldenburg, G.; Gottschling, H.; Schröder, M.; Burgkart, R. A numeric approach for anatomic plate design. Injury 2018, 49, S96–S101. [Google Scholar] [CrossRef]
- Tkany, L.; Hofstätter, B.; Petersik, A.; Miehling, J.; Wartzack, S.; Sesselmann, S. New Design Process for Anatomically Enhanced Osteosynthesis Plates. J. Orthop. Res. 2019, 37, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, B.; Rathnayaka, K.; Albrecht, T. Anatomical fitting of a plate shape directly derived from a 3D statistical bone model of the tibia. J. Clin. Orthop. Trauma 2019, 10, S236–S241. [Google Scholar] [CrossRef] [PubMed]
- Uhthoff, H.K.; Poitras, P.; Backman, D. Internal plate fixation of fractures: Short history and recent developments. J. Orthop. Sci. 2006, 11, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Reith, G.; Schmitz-Greven, V.; Hensel, K.O.; Schneider, M.M.; Tinschmann, T.; Bouillon, B.; Probst, C. Metal implant removal: Benefits and drawbacks—A patient survey. BMC Surg. 2015, 15, 96. [Google Scholar] [CrossRef] [Green Version]
- Augat, P.; von Rüden, C. Evolution of fracture treatment with bone plates. Injury 2018, 49, S2–S7. [Google Scholar] [CrossRef]
- Chang, C.; Lue, A.; Zhang, L. Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008, 209, 1266–1273. [Google Scholar] [CrossRef]
- Chocholata, P.; Kulda, V.; Dvorakova, J.; Dobra, J.K.; Babuska, V. Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int. J. Mol. Sci. 2020, 21, 5719. [Google Scholar] [CrossRef]
- Tribological Properties of Polyvinyl Alcohol Hydrogels as Artificial Articular Carti-lage. In Hydrogels: Synthesis, Characterization and Applications; Câmara, F.V.; Ferreira, L.J. (Eds.) Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 329–344. [Google Scholar]
- Teixeira, M.A.; Amorim, M.T.P.; Felgueiras, H.P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.; Silva, C.; Buttel, Z.; Guimarães, R.; Pereira, S.; Tamagnini, P.; Zille, A. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr. Polym. 2014, 99, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Leitão, A.F.; Silva, J.P.; Dourado, F.; Gama, M. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite. Materials 2013, 6, 1956–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolto, B.; Tran, T.; Hoang, M.; Xie, Z. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 2009, 34, 969–981. [Google Scholar] [CrossRef]
- Bichara, A.D.; Bodugoz-Sentruk, H.; Ling, D.; Malchau, E.; Bragdon, C.R.; Muratoglu, O.K. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed. Mater. 2014, 9, 045012. [Google Scholar] [CrossRef] [PubMed]
- Chrea, B.; Day, J.; Eble, S.K.; Elliott, A.; O’Malley, M.J.; Demetracopoulos, C.; Deland, J.T.; Drakos, M.C. Outcomes of Polyvinyl Alcohol Hydrogel Implant of the Lesser Metatarsals. Foot Ankle Int. 2020, 41, 1092–1098. [Google Scholar] [CrossRef]
- Remiš, T.; Bělský, P.; Andersen, S.; Tomáš, M.; Kadlec, J.; Kovářík, T. Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranes: A Comparative Study. J. Macromol. Sci. Part B 2019, 59, 157–181. [Google Scholar] [CrossRef]
- Bogdanovich, A. Advances in 3D Textiles; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Li, T.-T.; Zhang, Y.; Ling, L.; Lin, M.-C.; Wang, Y.; Wu, L.; Lin, J.-H.; Lou, C.-W. Manufacture and characteristics of HA-Electrodeposited polylactic acid/polyvinyl alcohol biodegradable braided scaffolds. J. Mech. Behav. Biomed. Mater. 2019, 103, 103555. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, H.; Li, T.; He, T.; Temple, J.; King, M.W.; Spagnoli, A. Tissue engineering a tendon-bone junction with biodegradable braided scaffolds. Biomater. Res. 2019, 23, 11. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 22. [Google Scholar]
- Gries, T.; Stueve, J.; Grundmann, T.; Veit, D. Textile structures for load-bearing applications in automobiles. In Textile Advances in the Automotive Industry; Elsevier: Amsterdam, The Netherlands, 2008; pp. 301–319. [Google Scholar]
- Lin, J.-H.; Lee, M.-C.; Chen, C.-K.; Huang, C.-L.; Chen, Y.-S.; Wen, S.-P.; Kuo, S.-T.; Lou, C.-W. Recovery evaluation of rats’ damaged tibias: Implantation of core-shell structured bone scaffolds made using hollow braids and a freeze-thawing process. Mater. Sci. Eng. C 2017, 79, 481–490. [Google Scholar] [CrossRef]
- Jain, N.; Singh, V.K.; Chauhan, S. Dynamic and creep analysis of polyvinyl alcohol based films blended with starch and protein. J. Polym. Eng. 2018, 39, 35–47. [Google Scholar] [CrossRef]
- Jain, N.; Verma, A.; Singh, V.K. Dynamic Mechanical Analysis and Creep-recovery behaviour of Polyvinyl Alcohol based cross-linked Biocomposite reinforced with Basalt fiber. Mater. Res. Express 2019, 6, 105373. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, J.; Geng, G.; Jiang, J.; Liu, X. Effect of fiber types on creep behavior of concrete. Constr. Build. Mater. 2016, 105, 416–422. [Google Scholar] [CrossRef]
- Bercea, M.; Gradinaru, L.M.; Plugariu, I.; Mandru, M.; Tigau, D.L. Viscoelastic behaviour of self-assembling polyurethane and poly(vinyl alcohol). Polym. Int. 2019, 69, 149–155. [Google Scholar] [CrossRef]
- Jia, X.; Li, Y.; Cheng, Q.; Zhang, S.; Zhang, B. Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur. Polym. J. 2007, 43, 1123–1131. [Google Scholar] [CrossRef]
- Pingan, H.; Mengjun, J.; Yanyan, Z.; Ling, H. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv. 2017, 7, 2450–2459. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, M.; Hossin, A.; Haik, Y. Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. J. Appl. Polym. Sci. 2011, 122, 3102–3109. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; García-Carvajal, Z.Y.; Jobbágy, M.; Rubio, F.; Yuste, L.; Rojo, F.; Ferrer, M.L.; del Monte, F. Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release. Adv. Funct. Mater. 2007, 17, 3505–3513. [Google Scholar] [CrossRef] [Green Version]
- Campa-Siqueiros, P.; Madera-Santana, T.J.; Ayala-Zavala, J.F.; López-Cervantes, J.; Castillo-Ortega, M.M.; Herrera-Franco, P.J. Nanofibers of gelatin and polivinyl-alcohol-chitosan for wound dressing application: Fabrication and characterization. Polímeros 2020, 30, e2020006. [Google Scholar] [CrossRef]
- Singha, N.R.; Parya, T.; Ray, S. Dehydration of 1,4-dioxane by pervaporation using filled and crosslinked polyvinyl alcohol membrane. J. Membr. Sci. 2009, 340, 35–44. [Google Scholar] [CrossRef]
- Bhat, S.A.; Zafar, F.; Mondal, A.H.; Mirza, A.U.; Haq, Q.M.R.; Nishat, N. Efficient removal of Congo red dye from aqueous solution by adsorbent films of polyvinyl alcohol/melamine-formaldehyde composite and bactericidal effects. J. Clean. Prod. 2020, 255, 120062. [Google Scholar] [CrossRef]
- Martínez-Felipe, A.; Moliner-Estopiñán, C.; Imrie, C.T.; Ribes-Greus, A. Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells. J. Appl. Polym. Sci. 2011, 124, 1000–1011. [Google Scholar] [CrossRef]
- Mansur, H.; Orefice, R.; Mansur, A. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Costa-Júnior, E.D.S.; Pereira, M.M.; Mansur, H.S. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J. Mater. Sci. Mater. Med. 2008, 20, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Menczel, J.D. Dynamic mechanical analysis (DMA) in fiber research. In Thermal Analysis of Textiles and Fibers; Woodhead Publishing: Manchester, UK, 2020; pp. 95–104. [Google Scholar] [CrossRef]
- Guerrini, L.M.; de Oliveira, M.P.; Branciforti, M.C.; Custódio, T.A.; Bretas, R.E.S. Thermal and structural characterization of nanofibers of poly(vinyl alcohol) produced by electrospinning. J. Appl. Polym. Sci. 2009, 112, 1680–1687. [Google Scholar] [CrossRef]
- Puppi, D.; Piras, A.M.; Detta, N.; Ylikauppila, H.; Nikkola, L.; Ashammakhi, N.; Chiellini, F.; Chiellini, E. Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. J. Bioact. Compat. Polym. 2010, 26, 20–34. [Google Scholar] [CrossRef]
- Royall, P.G.; Huang, C.-Y.; Tang, S.-W.J.; Duncan, J.; Van-De-Velde, G.; Brown, M. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int. J. Pharm. 2005, 301, 181–191. [Google Scholar] [CrossRef]
Structure | No. of Filaments/Fibres | Braid Angle (°) | Stiffness, K0 (N/mm) | Ultimate Load, Pu (N) | Displacement at Rupture, δu (mm) |
---|---|---|---|---|---|
1Y | 6 | - | 0.01 (14%) | 0.64 (8%) | 129.24 (17%) |
6PY | 36 | - | 0.21 (31%) | 3.64 (8%) | 46.95 (13%) |
6Y | 36 | - | 0.57 (21%) | 4.52 (20%) | 20.90 (26%) |
6BY | 216 | 18.198 | 1.35 (23%) | 27.05 (7%) | 59.12 (17%) |
8BY | 288 | 22.086 | 0.99 (27%) | 35.26 (7%) | 71.35 (23%) |
10BY | 360 | 25.085 | 1.82 (23%) | 41.62 (11%) | 52.65 (17%) |
Structure | No. of Filaments/ Fibres | Area, A (mm2) | Young Modulus, E (MPa) | Strength, σu (MPa) | Ultimate Strain, εu (%) |
---|---|---|---|---|---|
1Y | 6 | 0.003 | 6.029 (25%) | 486.872 (27%) | 82.515 (23%) |
6PY | 36 | 0.018 | 14.266 (27%) | 296.686 (11%) | 38.396 (12%) |
6Y | 36 | 0.018 | 33.934 (11%) | 316.180 (8%) | 19.569 (16%) |
6BY | 216 | 0.108 | 14.217 (22%) | 398.501 (12%) | 46.235 (14%) |
8BY | 288 | 0.144 | 7.535 (30%) | 419.473 (14%) | 53.407 (18%) |
10BY | 360 | 0.181 | 10.894 (21%) | 352.788 (16%) | 42.072 (15%) |
Structure | Applied Stress (MPa) | Strain (%) |
---|---|---|
6BY | 63.76 | ε = 0.5578875 + 3.5897556 ln(t) |
8BY | 67.12 | ε = 2.4604387 + 2.3397383 ln(t) |
10BY | 56.45 | ε = 2.1538739 + 2.307223 ln(t) |
Structure | Applied Strain (%) | Stress (MPa) |
6BY | 5 | σ = 26.31123349 − 2.5757711 ln(t) |
8BY | 8.5 | σ = 40.012435 − 3.7909087 ln(t) |
10BY | 8 | σ = 7.7098721 − 0.51067574 ln(t) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, T.F.; Quinaz, T.; Fertuzinhos, A.; Quyền, N.T.; de Moura, M.F.S.M.; Martins, M.; Zille, A.; Dourado, N. Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns. Polymers 2021, 13, 3644. https://doi.org/10.3390/polym13213644
Freire TF, Quinaz T, Fertuzinhos A, Quyền NT, de Moura MFSM, Martins M, Zille A, Dourado N. Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns. Polymers. 2021; 13(21):3644. https://doi.org/10.3390/polym13213644
Chicago/Turabian StyleFreire, Tania F., Tiago Quinaz, Aureliano Fertuzinhos, Nguyễn T. Quyền, Marcelo F. S. M. de Moura, Marcos Martins, Andrea Zille, and Nuno Dourado. 2021. "Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns" Polymers 13, no. 21: 3644. https://doi.org/10.3390/polym13213644
APA StyleFreire, T. F., Quinaz, T., Fertuzinhos, A., Quyền, N. T., de Moura, M. F. S. M., Martins, M., Zille, A., & Dourado, N. (2021). Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns. Polymers, 13(21), 3644. https://doi.org/10.3390/polym13213644