Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review
Abstract
:1. Introduction
2. Recycling of Residual Polymers
2.1. Mechanical Recycling
2.2. Chemical Recycling
2.3. Thermal Recycling
3. Natural Fibers as a Sustainable Alternative to Reinforce Residual Polymers
3.1. Cellulose
3.2. Hemicellulose
3.3. Lignin
3.4. Pectin
4. Properties of Natural Fibers and Their Wide Potential as Reinforcements in Residual Polymers
5. Treatments to Natural Fibers to Optimize the Interaction with Residual Polymers of Biocomposts
5.1. Physical Treatments
5.2. Chemical Treatments
6. Properties of Polymers Reinforced with Natural Fibers
7. Feasible Applications for the Recycling of Reinforced Residual Polymers as Innovative and Sustainable Solutions
8. Challenges of Polymeric Reinforcements in the Context of Engineering Applications
9. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Azman, M.; Asyraf, M.; Khalina, A.; Petrů, M.; Ruzaidi, C.; Sapuan, S.; Nik, W.W.; Ishak, M.; Ilyas, R.; Suriani, M. Natural fiber reinforced composite material for product design: A short review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef]
- Ganesan, C.; Joanna, P. Fatigue life and residual strength prediction of GFRP composites: An experimental and theoretical approach. Lat. Am. J. Solids Struct. 2018, 15, 72. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Pongwisuthiruchte, A.; Potiyaraj, P. Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. J. Appl. Polym. Sci. 2021, 138, 50866. [Google Scholar] [CrossRef]
- Gowda, T.Y.; Sanjay, M.; Bhat, K.S.; Madhu, P.; Senthamaraikannan, P.; Yogesha, B. Polymer matrix-natural fiber composites: An overview. Cogent Eng. 2018, 5, 13. [Google Scholar] [CrossRef]
- Girijappa, Y.G.T.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Ngo, T.-D. Natural Fibers for Sustainable Bio-Composites; IntechOpen: London, UK, 2018. [Google Scholar]
- Sonar, T.; Patil, S.; Deshmukh, V.; Acharya, R. Natural fiber reinforced polymer composite material—A review. J. Mech. Civil Eng. 2015, 33, 142–147. Available online: https://api.semanticscholar.org/CorpusID:41129643 (accessed on 11 August 2021).
- Mohamed, S.; Zainudin, E.; Sapuan, S.; Azaman, M.; Arifin, A. Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 1–25. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Alias, A.H.; Rushdan, A.I.; Norrrahim, M.N.F.; Abdan, K.; Abdullah, N. Treatments of natural fibre as reinforcement in polymer composites—Short review. Funct. Compos. Struct. 2021, 3, 1047. [Google Scholar] [CrossRef]
- Restrepo, S.M.V.; Arroyave, G.J.P.; Vásquez, D.H.G. Uso de fibras vegetales en materiales compuestos de matriz polimérica: Una revisión con miras a su aplicación en el diseño de nuevos productos. Inf. Téc. 2016, 80, 77. [Google Scholar] [CrossRef] [Green Version]
- Athith, D.; Sanjay, M.R.; Yashas Gowda, T.G.; Madhu, P.; Arpitha, G.R.; Yogesha, B.; Omri, M.A. Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. J. Ind. Text. 2017, 48, 713–737. [Google Scholar] [CrossRef]
- Díaz-Ramírez, G.; Maradei, F.; Vargas-Linares, G. Bagasse sugarcane fibers as reinforcement agents for natural composites: Description and polymer composite applications. Rev. UIS Ing. 2019, 18, 117–130. [Google Scholar] [CrossRef]
- Chaquilla-Quilca, G.; Quintana, R.R.B.; Mendoza-Wilson, A.M.; Mercado-Ruiz, J.N. Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. CienciaUAT 2018, 12, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.; Zavala, R.; Rivera, J.; Mendoza, A.; Diaz, N.; Rangel, N. Compatibilidad de poliuretano modificado y poliácido acrílico en una red polimérica interpenetrada. Rev. Iberoam. Polímeros 2016, 17, 122–128. Available online: https://api.semanticscholar.org/CorpusID:192868624 (accessed on 16 August 2021).
- Mancilla, Y.M.G. Uso de almidón de papa modificado como agente acoplante en compuestos polímero-fibras de madera/The effect of potato starch modified as a coupling agent in polymer-wood fiber composites. Prospectiva 2018, 16, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Manimaran, P.; Saravanan, S.; Sanjay, M.; Siengchin, S.; Jawaid, M.; Khan, A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater. Res. Technol. 2019, 8, 1952–1963. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Muthu, S.S. Textiles and Clothing Sustainability, 1st ed.; Springer Singapore: Berlin, Germany, 2017; pp. 1–137. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef] [Green Version]
- Patti, A.; Cicala, G.; Acierno, D. Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers 2020, 13, 134. [Google Scholar] [CrossRef]
- Bhadra, J.; Al-Thani, N.; Abdulkareem, A. Recycling of polymer-polymer composites. Micro Nano Fibrillar Compos. MFCs NFCs Polym. Blends 2017, 1, 263–277. [Google Scholar] [CrossRef]
- Cestari, S.P.; da Silva Freitas Freitas, D.D.F.; Rodrigues, D.C.; Mendes, L.C. Recycling processes and issues in natural fiber-reinforced polymer composites. Green Compos. Autom. Appl. 2019, 1, 285–299. [Google Scholar] [CrossRef]
- Gopalraj, S.K.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 433. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.; Rudd, C.; Pickering, S.; Liu, X. Composites recycling solutions for the aviation industry. Sci. China Ser. E Technol. Sci. 2017, 60, 1291–1300. [Google Scholar] [CrossRef]
- Xiao, B.; Zaima, T.; Shindo, K.; Kohira, T.; Morisawa, J.; Wan, Y.; Yin, G.; Ohsawa, I.; Takahashi, J. Characterization and elastic property modeling of discontinuous carbon fiber reinforced thermoplastics prepared by a carding and stretching system using treated carbon fibers. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105598. [Google Scholar] [CrossRef]
- Van de Werken, N.; Reese, M.S.; Taha, M.R.; Tehrani, M. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2019, 119, 38–47. [Google Scholar] [CrossRef]
- Dong, P.A.V.; Azzaro-Pantel, C.; Cadene, A.-L. Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resour. Conserv. Recycl. 2018, 133, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.G.M.; Paiva, J.M.F.; Carmo, J.B.D.; Botaro, V. Recycling of carbon fibers inserted in composite of DGEBA epoxy matrix by thermal degradation. Polym. Degrad. Stab. 2014, 109, 50–58. [Google Scholar] [CrossRef]
- López, F.A.; Rodríguez, O.; Alguacil, F.J.; García-Díaz, I.; Centeno, T.A.; García-Fierro, J.L.; González, C. Recovery of carbon fibres by the thermolysis and gasification of waste prepreg. J. Anal. Appl. Pyrolysis 2013, 104, 675–683. [Google Scholar] [CrossRef]
- Pickering, S.; Turner, T.; Meng, F.; Morris, C.; Heil, J.; Wong, K.; Melendi, S. Developments in the fluidised bed process for fibre recovery from thermoset composites. In Proceedings of the 2nd Annual Composites and Advanced Materials Expo, CAMX 2015, Dallas, TX, USA, 27–29 October 2015; pp. 2384–2394. Available online: https://ueaeprints.uea.ac.uk/id/eprint/59648 (accessed on 15 July 2021).
- Azammi, A.N.; Ilyas, R.; Sapuan, S.; Ibrahim, R.; Atikah, M.; Asrofi, M.; Atiqah, A. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. Interfaces Part. Fibre Reinf. Compos. 2020, 1, 29–93. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F.; El Kissi, N. Rheological and mechanical characterization of polypropylene-based wood plastic composites. Polym. Compos. 2016, 37, 3460–3473. [Google Scholar] [CrossRef]
- Malagutti, L.; Mollica, F.; Mazzanti, V. Error amplification in capillary viscometry of power law fluids with slip. Polym. Test. 2020, 91, 106816. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. Pressure dependent wall slip of wood flour filled polymer melts. J. Non Newton. Fluid Mech. 2017, 247, 178–187. [Google Scholar] [CrossRef]
- Thakur, V.K. Green Composites from Natural Resources; CRC Press: Boca Raton, FL, USA, 2013; Volume 1, p. 10. [Google Scholar]
- Montalvo, P.A.J.; Del Pino, L.F.; Figueroa, L.V.; Rengifo, R.A.N. Remoción de lignina en el pretratamiento de cascarilla de arroz por explosión con vapor. Rev. Soc. Quím. Perú 2019, 85, 352–361. [Google Scholar] [CrossRef]
- Maradiaga Rodriguez, W.D.; Wagner Evangelista, A.; Sette, C.R., Jr.; Alves Júnior, J.; Fernandes da Silva, M. Producción de briquetas con residuos de cáscara de piñón manso (Jatropha curcas) y bagazo de caña de azúcar. Bosque 2017, 38, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Isaza, C.A.V.; Yepes, W.U.; Vergara, M.Y.A.; Manosalba, C.J.S. Comportamiento fisicoquímico de compuestos de caucho natural al adicionar residuos agroindustriales como cargas reforzantes. Rev. EIA 2019, 16, 129–149. [Google Scholar] [CrossRef]
- Bonilla, H.; Armijos, H.; Calderón, B. Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Av. Quím. 2015, 10, 79–82. Available online: https://www.redalyc.org/articulo.oa?id=93341009011 (accessed on 10 May 2021).
- Pereira, P.H.F.; de Freitas Rosa, M.; Cioffi, M.O.H.; de Carvalho Benini, K.C.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R. Vegetal fibers in polymeric composites: A review. Polímeros 2015, 25, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: Past findings, present trends and future directions. Materials 2018, 11, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda, J.L.S.; Montoya, J.W.R.; Figueroa, A.Q.; Navarro, F.A.M. Fibras vegetales colombianas como refuerzo en compuestos de matriz polimérica. Rev. Tecnura 2017, 21, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Megashah, L.N.; Ariffin, H.; Zakaria, M.R.; Hassan, M.A. Properties of cellulose extract from different types of oil palm biomass. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012049. [Google Scholar] [CrossRef]
- Salas, N.S.; Gutiérrez, F.O.; Murillo, L.D.M.; Ureña, Y.C.; Johnson, S.; Baudrit, J.V.; González-Paz, R.J. Synthesis and reinforcement of thermostable polymers using renewable resources. J. Renew. Mater. 2017, 5, 313–322. [Google Scholar] [CrossRef]
- Sadeghi, S.; Dadashian, F.; Eslahi, N. Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16, 1119–1128. [Google Scholar] [CrossRef]
- Syafri, E.; Kasim, A.; Abral, H.; Asben, A. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fibers 2018, 16, 1145–1155. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Amuthakkannan, P.; Chandrasekar, M. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 427–440. [Google Scholar]
- Varghese, A.M.; Mittal, V. Surface modification of natural fibers. In Biodegradable and Biocompatible Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–155. [Google Scholar]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. Sustain. Compos. Aerosp. Appl. 2018, 1, 253–268. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Abedom, F.; Sakthivel, S.; Asfaw, D.; Melese, B.; Solomon, E.; Kumar, S.S. Development of natural fiber hybrid composites using sugarcane bagasse and bamboo charcoal for automotive thermal insulation materials. Adv. Mater. Sci. Eng. 2021, 2021, 2508840. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Marescotti, C.; Mazzanti, V.; Pompoli, F. Characterization and vibro-acoustic modeling of wood composite panels. Materials 2020, 13, 1897. [Google Scholar] [CrossRef] [Green Version]
- Bharath, K.N.; Basavarajappa, S. Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos. Mater. 2016, 23, 123–133. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Medina, A.A.; Baucis, A.G.; Catalán, M.A.; Andía, I.R.; Trangoni, F.; Razquin, M.; Pampiglioni, A.; Vuillermet, A. Características y propiedades físicas de la madera de álamos cultivados en Río Negro, Patagonia Argentina. Madera Bosques 2017, 24, e2411434. [Google Scholar] [CrossRef] [Green Version]
- Maslinda, A.; Majid, M.S.A.; Ridzuan, M.; Afendi, M.; Gibson, A. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Bordoloi, S.; Garg, A.; Sekharan, S. A review of physio-biochemical properties of natural fibers and their application in soil reinforcement. Adv. Civ. Eng. Mater. 2017, 6, 323–359. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Laborel-Préneron, A.; Aubert, J.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Kumar, A.; Vlach, T.; Laiblova, L.; Hrouda, M.; Kasal, B.; Tywoniak, J.; Hajek, P. Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Constr. Build. Mater. 2016, 127, 815–827. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential application of green composites for cross arm component in transmission tower: A brief review. Int. J. Polym. Sci. 2020, 2020, 8878300. [Google Scholar] [CrossRef]
- Keya, K.N.; Kona, N.A.; Koly, F.A.; Maraz, K.M.; Islam, N.; Khan, R.A. Natural fiber reinforced polymer composites: History, types, advantages, and applications. Mater. Eng. Res. 2019, 1, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Su, N.; Zhang, K.; Zhu, S.; Zhu, Z.; Qin, W.; Yang, Y.; Shi, Y.; Fan, S.; Wang, Z.; et al. Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fiber bundles. Ind. Crop. Prod. 2018, 123, 341–352. [Google Scholar] [CrossRef]
- Debeli, D.K.; Qin, Z.; Guo, J. Study on the pretreatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. J. Nat. Fibers 2017, 15, 596–610. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Rajini, N.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Siengchin, S. Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. J. Polym. Environ. 2019, 27, 1191–1201. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Saba, N.; Rajini, N.; Chandrasekar, M.; Jawaid, M.; Siengchin, S.; Alotman, O.Y. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Build. Mater. 2018, 174, 713–729. [Google Scholar] [CrossRef]
- Saravanakumaar, A.; Senthilkumar, A.; Saravanakumar, S.S.; Sanjay, M.R.; Khan, A. Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. Int. J. Polym. Anal. Charact. 2018, 23, 529–536. [Google Scholar] [CrossRef]
- Atiqah, A.; Jawaid, M.; Ishak, M.R.; Sapuan, S.M. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. J. Nat. Fibers 2018, 15, 251–261. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Bodur, M.S.; Bakkal, M.; Sonmez, H.E. The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016, 50, 3817–3830. [Google Scholar] [CrossRef]
- Masłowski, M.; Miedzianowska, J.; Strzelec, K. Influence of wheat, rye, and triticale straw on the properties of natural rubber composites. Adv. Polym. Technol. 2018, 37, 2866–2878. [Google Scholar] [CrossRef]
- Ali, M. Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Constr. 2016, 66, 073. [Google Scholar] [CrossRef] [Green Version]
- Moonart, U.; Utara, S. Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 2019, 26, 7271–7295. [Google Scholar] [CrossRef]
- Suwanruji, P.; Tuechart, T.; Smitthipong, W.; Chollakup, R. Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. J. Thermoplast. Compos. Mater. 2017, 30, 1344–1360. [Google Scholar] [CrossRef]
- Hosseini, S.B. Natural fiber polymer nanocomposites. Fiber Reinforced Nanocompos. Fundam. Appl. 2020, 279–299. [Google Scholar] [CrossRef]
- Adekunle, K.F. Surface treatments of natural fibres—A review: Part 1. Open J. Polym. Chem. 2015, 5, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Petrů, M.; Yu, H. The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Build. Mater. 2019, 208, 220–227. [Google Scholar] [CrossRef]
- Halip, J.A.; Hua, L.S.; Ashaari, Z.; Tahir, P.M.; Chen, L.W.; Uyup, M.K.A. Effect of treatment on water absorption behavior of natural fiber–Reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–156. [Google Scholar]
- Dolez, P.I.; Arfaoui, M.A.; Dubé, M.; David, E. Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proc. Eng. 2017, 200, 81–88. [Google Scholar] [CrossRef]
- Singh, J.I.P.; Dhawan, V.; Singh, S.; Jangid, K. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Mater. Today Proc. 2017, 4, 2793–2799. [Google Scholar] [CrossRef]
- Balakrishnan, P.; John, M.; Pothan, L.; Sreekala, M.; Thomas, S. Natural fibre and polymer matrix composites and their applications in aerospace engineering. Adv. Compos. Mater. Aerosp. Eng. 2016, 1, 365–383. [Google Scholar] [CrossRef]
- Hassani, F.O.; Merbahi, N.; Oushabi, A.; Elfadili, M.; Kammouni, A.; Oueldna, N. Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater. Today Proc. 2020, 24, 46–51. [Google Scholar] [CrossRef]
- Al-Azad, N.; Asril, M.F.M.; Shah, M.K.M. A review on development of natural fibre composites for construction applications. J. Mater. Sci. Chem. Eng. 2021, 9, 1–9. [Google Scholar] [CrossRef]
- López, D.F.; Rojas, A.F. Factores que influencian las propiedades mecánicas, físicas y térmicas de materiales compuestos madero plásticos. Entre Cienc. Ing. 2018, 12, 93–102. [Google Scholar] [CrossRef]
- Wahab, R.; Samsi, H.W.; Mustafa, M.T.; Mohamed, M.; Rasat, M.S.M.; Yusof, M. Physical, mechanical and morphological studies on bio-composite mixture of oil palm frond and kenaf bast fibers. J. Plant Sci. 2016, 11, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Khui, P.L.N.; Rahman, R.; Jayamani, E.; Bin Bakri, M.K. Recycling of sustainable polymers and composites. Adv. Sustain. Polym. Compos. 2021, 1, 267–282. [Google Scholar] [CrossRef]
- Meekum, U.; Khongrit, A. Toughening of wood-plastic composites based on silane/peroxide macro crosslink poly (propylene) systems. Bioresources 2018, 13, 1678–1695. [Google Scholar] [CrossRef]
- Oksman, K.; Clemons, C. Mechanical properties and morphology of impact modified polypropylene-wood flour composites. J. Appl. Polym. Sci. 1998, 67, 1503–1513. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Santoni, A.; Sbardella, F.; Calzolari, A.; Sarasini, F.; Mollica, F. Correlation between mechanical properties and processing conditions in rubber-toughened wood polymer composites. Polymers 2020, 12, 1170. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Atiqah, A.; Atikah, M.S.N.; Syafri, E.; Asrofi, M.; et al. Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. J. Biobased Mater. Bioenergy 2020, 14, 234–248. [Google Scholar] [CrossRef]
- Nurazzi, N.; Asyraf, M.; Khalina, A.; Abdullah, N.; Aisyah, H.; Rafiqah, S.; Sabaruddin, F.; Kamarudin, S.; Norrrahim, M.; Ilyas, R.; et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Pereira, A.C.; Ferreira, C.L.; Júnior Édio, P.; Weber, R.P.; de Assis, F.S. Performance of plain woven jute fabric-reinforced polyester matrix composite in multilayered ballistic system. Polymers 2018, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Sapuan, S.M.; Purushothman, K.R.; Sanyang, M.L.; Mansor, M.R. Design and fabrication of kenaf fibre reinforced polymer composites for portable laptop table. In Lignocellulosic Composite Materials, 1st ed.; Kalia, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 323–356. [Google Scholar] [CrossRef]
- Gupta, G.; Kumar, A.; Tyagi, R.; Kumar, S. Application and future of composite materials: A review. Int. J. Compos. Const. Mater. 2016, 5, 6907–6911. [Google Scholar] [CrossRef]
- Zin, M.H.; Abdan, K.; Mazlan, N.; Zainudin, E.S.; Liew, K.E. The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012035. [Google Scholar] [CrossRef]
- Dhakal, H. Mechanical performance of PC-based biocomposites. In Design and Mechanical Performance, 1st ed.; Misra, M., Pandey, J., Mohanty, A., Eds.; Woodhead Publishing: Portsmouth, UK, 2015; Volume 1, pp. 303–317. [Google Scholar] [CrossRef]
- Jariwala, H.; Jain, P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Compos. 2019, 38, 441–453. [Google Scholar] [CrossRef]
- De Melo, R.P.; Marques, M.F.; Navard, P.; Duque, N.P. Degradation studies and mechanical properties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. J. Compos. Mater. 2017, 51, 3481–3489. [Google Scholar] [CrossRef]
Recycling Method | Techniques and Processes | Reuse | Drawbacks | Authors |
---|---|---|---|---|
Mechanical | Crushing and/or grinding to reduce the size of polymer waste | Raw material to produce compounds for the same or other applications. | Limitations in its use due to the low density, interfacial adhesion, and mechanical resistance of the resulting fibers. | [22,24,25] |
Chemical | Chemical degradation of polymeric residues into basic chemicals. | Raw materials for petrochemical industries. Alternative fuels. | Water and air pollution problems; dangerous for the health of recyclers. | [22,26,27] |
Thermal | Recovery by pyrolysis and fluidized bed. | Energy, cement production. | Problems of atmospheric pollution due to the emission of low-molecular-weight gases. | [22,28,29] |
Natural Fibers | Scientific Name | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractive (%) | Ashes (%) | Author, Year |
---|---|---|---|---|---|---|---|
Sugar cane | Saccharum officinarum | 46.6–45.1 | 25.5–25.0 | 20.7–14.1 | 29.4–2.7 | 8.0–2.6 | [13,39] |
Pineapple | Ananas comosus | 81.2–45.0 | 50.0–12.3 | 30.0–3.4 | _ | _ | [2,40] |
Banana | Musa paradisiaca | 60.0–10.0 | 19.0–16.0 | 19.0–5.0 | 9.6–2.0 | 11.0–1.2 | [40,41] |
Hemp | Cannabis sativa | 72.0–68.0 | 15.0–10.0 | 10.0–3.0 | _ | 5.8–2.3 | [11,42] |
Coconut | Cocos nucifera | 53.0–43.0 | 14.7–1.0 | 45.0–38.4 | _ | _ | [42,43,44] |
Jute | Corchorus capsularis | 72.0–60.0 | 22.1–13.0 | 15.9–13.0 | _ | 3.0–2.5 | [11,42] |
Oil palm | Elaeis guineensis | 45.0–28.2 | 18.8–12.7 | 49.5–9.4 | 7.13–2.0 | [45,46] | |
Wheat | Triticum | 43.2–60.5 | 34.1–20.8 | 22.0–9.0 | _ | 5.7–5.6 | [14,42] |
Kenaf | Hibiscus cannabinus | 65.7–63.5 | 17.6–15.3 | 21.6–12.7 | 4.0–2.0 | 2.2–1.0 | [13,47] |
Flax | Linum usitatissimum | 81.0–70.0 | 20.6–16.7 | 10.0–3.0 | _ | _ | [11,43] |
Ramie | Boehmeria nivea | 73.0–69.8 | 14.0–9.6 | 3.9–1.6 | _ | _ | [44,47,48] |
Sisal | Agave sisalana | 75.0–65.0 | 13.9–10.0 | 10.0–7.6 | _ | 1.0–0.4 | [42,49,50] |
Natural Fibers | Density (g/cm3) | Endurance Traction (Mpa) | Tension Module (Gpa) | Elongation at Break (%) | Author, Year |
---|---|---|---|---|---|
Wood | 0.50–1.4 | 130–64 | 70–7 | _ | [56,57] |
Flax | 1.5–1.4 | 650–250 | 70–27 | 3.2–2.3 | [6,8,10,56] |
Hemp | 1.6–1.4 | 690–630 | 70.0–45 | 3.0–1.6 | [43,58,59] |
Jute | 1.5–1.3 | 773–325 | 55–26 | 2.5–1.5 | [8,56,60] |
Coconut | 1.5–1.2 | 180–146 | 6–3 | 30.0–27.5 | [6,43,56] |
Cotton | 1.6–1.5 | 310–191 | 12–5 | 8.0–7.0 | [8,56,59] |
Sisal | 1.2–1.5 | 430–335 | 22–9 | 8.0–2.5 | [6,10,59] |
Kenaf | 1.5–1.4 | 930–641 | 53–36 | 1.6–3.5 | [55,61,62] |
Bamboo | 1.1–0.6 | 140–600 | 89–48 | _ | [8,61,63] |
Natural Fibers | Treatments Used | Author, Year |
---|---|---|
Chemicals | ||
Bonga Hemp Kenaf Papaya Pineapple Sisal Jute | Alkaline NaOH; KOH, LiOH | [8,50,68,69,70,71] |
Rubber Sugar cane Kenaf Jamaica flower Papaya Ramie Hemp | Siliano SiH4 (3-glycidyloxypropyl) trimethoxysilane | [4,6,10,68,72,73,74] |
Sisal | Acetylation CH3COOH | [1,43] |
Coconut Sugar cane Cereal straw | Hydrogen peroxide H2O2 | [6,63,75] |
Jute | Benzoylation C7H5ClO | [6,63,76] |
Bamboo Hemp Trupillo Sisal | Potassium permanganate KMnO4 | [4,43,60,77] |
Sisal Jute | Stearic acid | [72,78] |
Physical | ||
Fique, jute, coconut, linen and cotton | Surface fibrillation | [42] |
Wheat, rye, coconut | Cold plasma Electric shocks Crown | [9,79,80] |
Ramie, falx, Kenaf and jute | Steam blast | [9] |
Areas | Applications | Author, Year |
---|---|---|
Automotive and aeronautics | Interior components, windshields, bumper packaging, brake pads, head restraints. | [4,5,8,18] |
Insulating materials | Sound insulation, thermal insulation, spill insulation, blowing insulation, panels, acoustic soundproofing. | [6] |
Architecture | Sunscreens, walls, coatings, decorative materials, sanitary ware, chairs and tables, kitchen sinks, tile, paper, floors. | [63,95] |
Marine environments | Marine docks, boats and their interior components (door panels, cockpit pillars, parts of the seats). | [5,6] |
Infrastructure and Construction | Load-bearing structures such as beams, roofs, multipurpose panels, pedestrian bridges, bricks, and low-cost housing. | [5,49,65,87] |
Biomedical | Restoration of teeth, medical tubes, implants, administration of drugs, bone fixation plates, bone cement, and bone grafts. Vascular grafts, intraocular lenses, pacemakers, biocensors, heart valves. | [1,40,50,66] |
Military | Ballistic protection, dashboards, helmets, vests, shields, shield components in vehicles. | [96,97] |
Recreation and sport | Musical instrument boards, helmets, chest protectors, leg protectors, hockey sticks, balls, snowboards, fishing pole, golf clubs, swords, cleats, and skis. | [63,66,98] |
Electrical and electronic | Transmission towers, isolators, and phone and laptop cases. | [2,13,33] |
Textile and footwear | Garment fabric, soles, insoles, upholstery, sacks, burlap cloth, carpet strings, carpet liners, and twine. | [9,11,18,63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes Molina, N.; Fragozo Brito, Y.; Polo Benavides, J.M. Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review. Polymers 2021, 13, 3612. https://doi.org/10.3390/polym13213612
Fuentes Molina N, Fragozo Brito Y, Polo Benavides JM. Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review. Polymers. 2021; 13(21):3612. https://doi.org/10.3390/polym13213612
Chicago/Turabian StyleFuentes Molina, Natalia, Yoleimis Fragozo Brito, and Jesús Manuel Polo Benavides. 2021. "Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review" Polymers 13, no. 21: 3612. https://doi.org/10.3390/polym13213612
APA StyleFuentes Molina, N., Fragozo Brito, Y., & Polo Benavides, J. M. (2021). Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review. Polymers, 13(21), 3612. https://doi.org/10.3390/polym13213612