Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fibres
2.3. Research Methods Used
3. Results and Discussion
3.1. General Characteristics of Fibres
3.2. Biocidal Properties of GO/CEL Fibres
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement.
Informed Consent Statement
Conflicts of Interest
References
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; El-Aziz, E.A.; Abou Elmaaty, T.M.; Ramadan, S.M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 2017, 7, 33219–33230. [Google Scholar] [CrossRef]
- Almasi, H.; Jafarzadeh, P.; Mehryar, L. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydr. Polym. 2018, 186, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Kaur, J.; Sun, L.; Wang, X. Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose 2013, 20, 3053–3065. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Chakraborty, S. Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose 2017, 24, 1563–1577. [Google Scholar] [CrossRef]
- Rac-Rumijowska, O.; Fiedot, M.; Karbownik, I.; Suchorska-Woźniak, P.; Teterycz, H. Synthesis of silver nanoparticles in NMMO and their in situ doping into cellulose fibers. Cellulose 2017, 24, 1355–1370. [Google Scholar] [CrossRef]
- Foksowicz-Flaczyk, J.; Walentowska, J.; Przybylak, M.; Maciejewski, H. Multifunctional durable properties of textile materials modified by biocidal agents in the sol-gel process. Surf. Coat. Technol. 2016, 304, 160–166. [Google Scholar] [CrossRef]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. [Google Scholar] [CrossRef]
- Texter, J. Graphene dispersions. Curr. Opin. Colloid Interface Sci. 2014, 19, 163–174. [Google Scholar] [CrossRef]
- Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N.D.; Jin, M.; Lee, Y.H.; Nam, J. Do Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2012, 24, 594–599. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef] [PubMed]
- Machnicka, A.; Fryczkowska, B. Bioactive membranes from cellulose with a graphene oxide admixture. J. Ecol. Eng. 2018, 19, 231–240. [Google Scholar] [CrossRef]
- Fryczkowska, B.; Machnicka, A.; Biniaś, D.; Ślusarczyk, C.; Fabia, J. The influence of graphene addition on the properties of composite rGO/PAN membranes and their potential application for water disinfection. Membranes 2020, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Appl. Mater. Interfaces 2013, 5, 3867–3874. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Wei, S.C.; Chou, C.P.; Zhang, L.Z.; Huang, C.C. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview. Nanoscale Horiz. 2019, 4, 117–137. [Google Scholar] [CrossRef]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Song, B.; Zhang, C.; Zeng, G.; Gong, J.; Chang, Y.; Jiang, Y. Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Arch. Biochem. Biophys. 2016, 604, 167–176. [Google Scholar] [CrossRef]
- Wu, X.; Tan, S.; Xing, Y.; Pu, Q.; Wu, M.; Zhao, J.X. Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf. B Biointerfaces 2017, 157, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.F.; Gurunathan, S. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: An excellent biocompatible nanomaterial. Int. J. Nanomed. 2016, 11, 6635–6649. [Google Scholar] [CrossRef]
- He, J.; Zhu, X.; Qi, Z.; Wang, C.; Mao, X.; Zhu, C.; He, Z.; Li, M.; Tang, Z. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 5605–5611. [Google Scholar] [CrossRef]
- Kelly, A.M.; Kaltenhauser, V.; Mühlbacher, I.; Rametsteiner, K.; Kren, H.; Slugovc, C.; Stelzer, F.; Wiesbrock, F. Poly(2-oxazoline)-derived contact biocides: Contributions to the understanding of antimicrobial activity. Macromol. Biosci. 2013, 13, 116–125. [Google Scholar] [CrossRef]
- Mühlbacher, I.; Wiesbrock, F. Self—Disinfectant Surfaces—Correlation Between Antimicrobial Activity and Zeta Potential; Institute for Chemistry and Technology of Materials: Graz, Austria, 2015. [Google Scholar]
- Kim, C.J.; Khan, W.; Kim, D.H.; Cho, K.S.; Park, S.Y. Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym. 2011, 86, 903–909. [Google Scholar] [CrossRef]
- Ślusarczyk, C.; Fryczkowska, B. Structure-property relationships of pure cellulose and GO/CEL membranes regenerated from ionic liquid solutions. Polymers 2019, 11, 1178. [Google Scholar] [CrossRef]
- Huang, H.D.; Liu, C.Y.; Li, D.; Chen, Y.H.; Zhong, G.J.; Li, Z.M. Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. J. Mater. Chem. A 2014, 2, 15853–15863. [Google Scholar] [CrossRef]
- Mahmoudian, S.; Wahit, M.U.; Imran, M.; Ismail, A.F.; Balakrishnan, H. A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J. Nanosci. Nanotechnol. 2012, 12, 5233–5239. [Google Scholar] [CrossRef]
- Gabrys, T.; Fryczkowska, B. Preparing and using cellulose granules as biodegradable and long-lasting carriers for artificial fertilizers. J. Ecol. Eng. 2018, 19, 111–122. [Google Scholar]
- Si, H.; Luo, H.; Xiong, G.; Yang, Z.; Raman, S.R.; Guo, R.; Wan, Y. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol. Rapid Commun. 2014, 35, 1706–1711. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Feng, J.; Wu, P. Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J. Phys. Chem. C 2012, 116, 8063–8068. [Google Scholar] [CrossRef]
- Yaghoubidoust, F.; Salimi, E. A simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets. Fibers Polym. 2019, 20, 1155–1160. [Google Scholar] [CrossRef]
- Yang, H.Y.; Jun, Y.; Yun, Y.J. Ultraviolet response of reduced graphene oxide/natural cellulose yarns with high flexibility. Compos. Part. B Eng. 2019, 163, 710–715. [Google Scholar] [CrossRef]
- Tian, M.; Qu, L.; Zhang, X.; Zhang, K.; Zhu, S.; Guo, X.; Han, G.; Tang, X.; Sun, Y. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr. Polym. 2014, 111, 456–462. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Facure, M.H.M.; Correa, D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II). Carbohydr. Polym. 2019, 207, 747–754. [Google Scholar] [CrossRef]
- Luo, H.; Ao, H.; Li, G.; Li, W.; Xiong, G.; Zhu, Y.; Wan, Y. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr. Appl. Phys. 2017, 17, 249–254. [Google Scholar] [CrossRef]
- Nandgaonkar, A.G.; Wang, Q.; Fu, K.; Krause, W.E.; Wei, Q.; Gorga, R.; ALucia, L. A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chem. 2014, 16, 3195–3201. [Google Scholar] [CrossRef]
- Shao, W.; Wang, S.; Liu, H.; Wu, J.; Zhang, R.; Min, H.; Huang, M. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances. Carbohydr. Polym. 2016, 138, 166–171. [Google Scholar] [CrossRef]
- Gabryś, T.; Fryczkowska, B.; Biniaś, D.; Ślusarczyk, C.; Fabia, J. Preparation and properties of composite cellulose fibres with the addition of graphene oxide. Carbohydr. Polym. 2020, 254, 117436. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Fryczkowska, B.; Biniaś, D.; Ślusarczyk, C.; Fabia, J.; Janicki, J. Properties and application of cellulose membranes with graphene oxide addition for removal of heavy metals from aqueous solutions. Desalin. Water Treat. 2018, 117, 66–77. [Google Scholar] [CrossRef]
- Wan, C.; Li, J. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 2016, 150, 172–179. [Google Scholar]
- Sundberg, J.; Toriz, G.; Gatenholm, P. Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer 2013, 54, 6555–6560. [Google Scholar] [CrossRef]
- Rouf, T.B.; Kokini, J.L. Biodegradable biopolymer—Graphene nanocomposites. J. Mater. Sci. 2016, 51, 9915–9945. [Google Scholar] [CrossRef]
- Clarification of GO Acted as a Barrier Against the Crack Propagation of the Cellulose Composite Films. Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S0266353814003273?token=0A4E982BFAC5CC81EDFA46E82B8D36B0AA4944F8A2DFC75B5FD2BAF80AC6F5CC067FDD906AB666461F7663AB175FFE21 (accessed on 21 December 2020).
- Cao, Y.; Wu, J.; Zhang, J.; Li, H.; Zhang, Y.; He, J. Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 2009, 147, 13–21. [Google Scholar] [CrossRef]
- Wypych, G. Cellulose. In Handbook of Polymers; ChemTecPublishing: Toronto, ON, Canada, 2012; pp. 25–29. ISBN 9781895198478. [Google Scholar]
- Chen, H.; Gao, D.; Wang, B.; Palmieri, V.; Lauriola, M.C.; Ciasca, G. The graphene oxide contradictory effects against human pathogens. Nanotechnology 2017, 28, 1–18. [Google Scholar]
- Xiao, S.; Lu, X.; Gou, L.; Li, J.; Ma, Y.; Liu, J.; Yang, K.; Yuan, B. Graphene oxide as antibacterial sensitizer: Mechanically disturbed cell membrane for enhanced poration efficiency of melittin. Carbon NY 2019, 149, 248–256. [Google Scholar] [CrossRef]
- Luxbacher, T. The Zeta Potential for Solid Surface Analysis, 1st ed.; Anton Paar GmbH: Graz, Austria, 2014. [Google Scholar]
- Luo, X.; Zhong, J.; Zhou, Q.; Du, S.; Yuan, S.; Liu, Y. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 18400–18415. [Google Scholar] [CrossRef]
- Kumar, R.; Oves, M.; Ameelbi, T.; Al-Makishah, N.H.; Barakat, M.A. Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J. Colloid Interface Sci. 2017, 490, 488–496. [Google Scholar] [CrossRef]
Determination of the Obtained Fibres | 0 | A | B | C | D |
---|---|---|---|---|---|
W/w conc. of GO in fibre [%] | 0 | 0.21 | 0.50 | 0.98 | 1.97 |
W/w conc. of CEL in fibre [%] | 100 | 99.79 | 99.50 | 99.02 | 98.03 |
Samples | The FTIR Peaks (cm−1) * | Bond Type |
All fibres | 3400–2400 | Wide band of the elastic O–H vibrations in the hydrogen bonds |
All fibres | 2900 | Stretching vibrations of the C–H oscillator |
Composite fibres | 1645 (1); 1637 (2) | Vibration of C=O groups in GO |
All fibres | 1160 | Asymmetric stretching vibrations of C–O–C in the pyranose ring |
All fibres | 1115 (1); 1117 (2) | Oscillation of etheric C–O–C groups between the pyranose rings |
Fibre Thickness (before Washing) (µm) | |||||||||
01nw | A1nw | B1nw | C1nw | D1nw | 02nw | A2nw | B2nw | C2nw | D2nw |
183 ± 6 | 175 ± 6 | 174 ± 8 | 174 ± 5 | 165 ± 5 | 156 ± 14 | 182 ± 7 | 187 ± 8 | 186 ± 8 | 180 ± 7 |
Fibre Thickness (after Washing) (µm) | |||||||||
01 | A1 | B1 | C1 | D1 | 02 | A2 | B2 | C2 | D2 |
169 ± 6 | 151 ± 5 | 156 ± 7 | 148 ± 5 | 147 ± 7 | 141 ± 7 | 163 ± 12 | 165 ± 4 | 165 ± 8 | 150 ± 9 |
Fibres before Washing [38] | Fibres after Washing | ||||||
---|---|---|---|---|---|---|---|
E (%) * | W (MPa) * | M (GPa) * | E (%) | W (MPa) | M (GPa) | ||
01nw * | 10.01 ± 2.37 | 137.22 ± 34.36 | 35.67 ± 3.06 | 01 | 13.05 ± 0.92 | 223.61 ± 13.28 | 7.91 ± 0.07 |
A1nw * | 12.79 ± 0.53 | 149.35 ± 6.66 | 59.00 ± 3.88 | A1 | 11.9 ± 1.37 | 188.92 ± 25.87 | 7.41 ± 0.45 |
B1nw * | 7.44 ± 1.01 | 165.86 ± 13.91 | 62.69 ± 3.55 | B1 | 9.5 ± 1.45 | 219.70 ± 20.06 | 8.52 ± 0.59 |
C1nw * | 14.32 ± 1.10 | 95.80 ± 4.38 | 48.92 ± 6.57 | C1 | 8.75 ± 0.51 | 132.75 ± 11.11 | 5.30 ± 0.51 |
D1nw * | 5.12 ± 0.49 | 111.38 ± 6.78 | 70.30 ± 4.55 | D1 | 7.45 ± 0.77 | 167.26 ± 9.23 | 6.97 ± 0.70 |
02nw * | 10.87 ± 2.21 | 88.06 ± 25.18 | 35.99 ± 4.02 | 02 | 10.25 ± 1.90 | 228.67 ± 28.05 | 8.81 ± 0.91 |
A2nw * | 20.06 ± 4.51 | 202.11 ± 25.27 | 53.70 ± 4.09 | A2 | 8.55 ± 1.34 | 287.32 ± 20.01 | 10.71 ± 0.82 |
B2nw * | 19.54 ± 3.93 | 224.33 ± 15.72 | 83.34 ± 3.89 | B2 | 7.7 ± 1.41 | 172.16 ± 13.75 | 6.56 ± 0.55 |
C2nw * | 19.93 ± 1.41 | 154.54 ± 6.20 | 92.51 ± 6.30 | C2 | 7.65 ± 1.01 | 189.65 ± 15.21 | 7.41 ± 0.69 |
D2nw * | 10.27 ± 1.61 | 146.31 ± 8.46 | 81.91 ± 3.49 | D2 | 19.55 ± 1.25 | 193.41 ± 21.09 | 6.25 ± 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabryś, T.M.; Fryczkowska, B.; Machnicka, A.; Graczyk, T. Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties. Polymers 2021, 13, 204. https://doi.org/10.3390/polym13020204
Gabryś TM, Fryczkowska B, Machnicka A, Graczyk T. Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties. Polymers. 2021; 13(2):204. https://doi.org/10.3390/polym13020204
Chicago/Turabian StyleGabryś, Tobiasz Maksymilian, Beata Fryczkowska, Alicja Machnicka, and Tadeusz Graczyk. 2021. "Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties" Polymers 13, no. 2: 204. https://doi.org/10.3390/polym13020204
APA StyleGabryś, T. M., Fryczkowska, B., Machnicka, A., & Graczyk, T. (2021). Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties. Polymers, 13(2), 204. https://doi.org/10.3390/polym13020204