Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Conditions during Testing
2.2. Tested Films and Bags
2.3. Conducting the Experiment
3. Results
3.1. Tensile Properties
3.2. Tensile-Impact Strength
3.3. Fourier-Transform Infrared Spectroscopy
3.4. Thermogravimetric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamcová, D.; Vaverková, M.D.; Mašíček, T.; Břoušková, E. Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment. J. Ecol. Eng. 2016, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Letcher, T. Introduction to plastic waste and recycling. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T., Ed.; Academic Press: Cambridge, MA, USA, 2020; Available online: https://www.elsevier.com/books/plastic-waste-and-recycling/letcher/978-0-12-817880-5 (accessed on 1 May 2021).
- Ren, X. Biodegradable plastics: A solution or a challenge? J. Clean. Prod. 2003, 11, 27–40. [Google Scholar] [CrossRef]
- Rujnić Havstad, M. Biodegradable plastics. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T., Ed.; Academic Press: Cambridge, MA, USA, 2020; Available online: https://www.elsevier.com/books/plastic-waste-and-recycling/letcher/978-0-12-817880-5 (accessed on 12 May 2021).
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Engla, G.; Soni, L.K.; Dixit, V.K. Biodegradable polymers: A smart strategy for today’s crucial needs. Crit. Rev. Pharm. Sci. 2014, 3, 1–70, ISSN 2319-1082. [Google Scholar]
- Vaverková, M.; Adamcová, D.; Zloch, J. How do degradable/biodegradable plastic materials decompose in home composting environment? J. Ecol. Engineering. 2014, 15, 82–89. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; García-Rivera, M.A.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A.; Beltrán-Villavicencio, M.; Cisneros-Ramos, A.L. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Env. Sci. Pollut. Res. Int. 2017, 24, 25725–25730. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Hernandez, J.C.; Capowiez, Y.; Ro, K.S. Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics. ACS Sustain. Chem. Eng. 2020, 8, 4292–4316. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.P.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Juroš, L. Comparison of Mechanical Properties of Biodegradable Household Bags. Diploma Thesis, FSB, Zagreb, Croatia, 2020. [Google Scholar]
- Hazrati, H.; Shayegan, J.; Seyedi, S.M. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture. J. Environ. Health Sci. Eng. 2015, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosin, M.; Pischedda, A.; Degli-Innocenti, F. Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polym. Degrad. Stab. 2019, 166, 213–218. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H. Biodegradable Polymers “Biodegradation-Life of Science”. Chamy, R., Rosenkranz, F., Eds.; IntechOpen, Open Access Peer-Reviewed Chapter 2013. pp. 141–185. Available online: https://www.intechopen.com/chapters/45095 (accessed on 2 June 2020). [CrossRef] [Green Version]
- Accuweather. Available online: https://www.accuweather.com/hr/hr/zagreb/117910/may-weather/117910?year=2020 (accessed on 2 June 2020).
- HRN EN ISO 527-3:2019 Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets (ISO 527-3:2019); International Organization for Standardization, Croatian Standards Institute: Zagreb, Croatia, 2019.
- HRN EN ISO 8256:2004 Plastics—Determination of Tensile-Impact Strength (ISO 8256:2004); International Organization for Standardization, Croatian Standards Institute: Zagreb, Croatia, 2014.
- Czaja-Jagielska, N.; Melski, K. Biodegradation of Starch-Based Films in Conditions of Nonindustrial Composting. Pol. J. Environ. Stud. 2013, 22, 1039–1044. Available online: http://www.pjoes.com/Biodegradation-of-Starch-Based-Films-r-nin-Conditions-of-Nonindustrial-Composting,89060,0,2.html (accessed on 12 May 2021).
- Mostafa, H.M.; Sourell, H.; Bockisch, F.J. Mechanical properties of some bioplastics under different soil types used as biodegradable drip tubes. Agric. Eng. Int. CIGR J. 2010, 12, 12–21. Available online: https://www.researchgate.net/publication/277994731_Mechanical_properties_of_some_bioplastics_under_different_soil_types_used_as_biodegradable_drip_tubes (accessed on 20 May 2021).
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Pagliara, S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym. Degrad. Stab. 2006, 91, 2801–2808. [Google Scholar] [CrossRef]
- Irska, I.; Paszkiewicz, S.; Gorący, K.; Linares, A.; Ezquerra, T.A.; Jędrzejewski, R.; Rosłaniec, Z.; Piesowicz, E. Poly(butylene terephthalate)/polylactic acid based copolyesters and blends: Miscibility-structure-property relationship. Express Polym. Lett. 2020, 14, 26–47. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, W.; Wu, Q.; Ren, J. Preparation, Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(Lactic Acid) Blends. J. Nanomater. 2010, 287082, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Barrios-Guzmán, A.J.; García-Enriquez, S.; Rivera-Prado, J.J.; Manríquez-González, R. Chemical and Mechanical Evaluation of Bio-composites Based on Thermoplastic Starch and Wood Particles Prepared by Thermal Compression. Bioresources 2014, 9, 2960–2974. Available online: https://bioresources.cnr.ncsu.edu/resources/chemical-and-mechanical-evaluation-of-bio-composites-based-on-thermoplastic-starch-and-wood-particles-prepared-by-thermal-compression/ (accessed on 24 May 2021). [CrossRef]
- Pigłowska, M.; Kurc, B.; Rymaniak, Ł.; Lijewski, P.; Fuć, P. Kinetics and Thermodynamics of Thermal Degradation of Different Starches and Estimation the OH Group and H2O Content on the Surface by TG/DTG-DTA. Polymers 2020, 12, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Label | Certificates | Average Thickness, mm | Photo |
---|---|---|---|
B0 | DIN CERTCO 7P0324 TÜV AUSTRIA S0426 Industrial composting | 0.028 | |
SP | DIN CERTCO 7P03240 TÜV AUSTRIA S0426 Home composting | 0.011 | |
SW | DIN CERTCO 9G0087 TÜV AUSTRIA 7P0002 Industrial composting | 0.022 | |
B1, B2 | DIN CERTCO 7P0324 TÜV AUSTRIA S0426 B1 − Industrial composting B2 − Industrial and home composting | B1−0.04 B2−0.018 | |
Eco | DIN CERTCO 7W0188 Industrial composting | 0.017 | |
K | - | 0.019 | |
Tensile Strength, MPa | |||||
---|---|---|---|---|---|
Sample Name/ Months | 0 | 1 | 2 | 3 | 4 |
B0 | 11.2 ± 0.5 | 8.7 ± 0.9 | 10.9 ± 0.9 | 12.1 ± 1.9 | 8.3 ± 0.1 |
SP | 13.7 ± 2.2 | 9.9 ± 0.8 | 14.4 ± 4.3 | 8.4 ± 0.6 | - |
SW | 15.9 ± 2.0 | 11.5 ± 1.7 | 10.2 ± 0.9 | 10.7 ± 0.8 | 7.6 ± 1.7 |
B1 | 10.9 ± 1.7 | 12.2 ± 1.6 | 10.9 ± 0.8 | 12.5 ± 1.7 | - |
B2 | 15.3 ± 0.9 | 6.2 ± 2.4 | 10.5 ± 0.9 | 9.3 ± 1.4 | - |
Eco | 18.2 ± 3.6 | 20.2 ± 4.4 | 16.1 ± 6.2 | 10.5 ± 1.2 | 14.7 ± 3.5 |
K | 7.3 ± 0.3 | 9.4 ± 0.8 | 9.0 ± 0.4 | 3.8 ± 1.3 | - |
Tensile Strength at Break, MPa | |||||
---|---|---|---|---|---|
Sample Name/ Months | 0 | 1 | 2 | 3 | 4 |
B0 | 11.1 ± 0.6 | 5.4 ± 3 | 7.9 ± 4.3 | 9.5 ± 3.1 | 4.8 ± 1.4 |
SP | 10.0 ± 2.9 | 4.6 ± 1.3 | 10.9 ± 5.9 | 2.4 ± 1.0 | - |
SW | 12.8 ± 5.1 | 8.3 ± 3 | 7.3 ± 1.8 | 6.7 ± 3.2 | 3.2 ± 3.1 |
B1 | 9.9 ± 1.7 | 10.7 ± 1.2 | 7.7 ± 1.5 | 9.5 ± 3.5 | - |
B2 | 14.3 ± 1.4 | 3.4 ± 2.4 | 8.2 ± 3.2 | 5.5 ± 2.3 | - |
Eco | 17 ± 3.9 | 16.4 ± 6.2 | 10.9 ± 7.5 | 6.8 ± 2.1 | 10 ± 1.3 |
K | 4.1 ± 0.6 | 7.8 ± 1.0 | 4.7 ± 1.0 | 0.4 ± 0.05 | - |
Tensile Strain at Break, % | |||||
---|---|---|---|---|---|
Sample Name/ Months | 0 | 1 | 2 | 3 | 4 |
B0 | 441 ± 10.1 | 227.3 ± 142.5 | 265.5 ± 56.9 | 444.9 ± 83.4 | 36.8 ± 7.7 |
SP | 299 ± 65.6 | 225 ± 126.6 | 237.4 ± 80.2 | 66.7 ± 27.9 | - |
SW | 313.6 ± 73.1 | 352.4 ± 162.2 | 339.2 ± 27.0 | 252 ± 111.7 | 55.5 ± 33.2 |
B1 | 423.3 ± 156.2 | 477.8 ± 75.7 | 355 ± 53.7 | 525.2 ± 100.6 | - |
B2 | 487.7 ± 45.0 | 15.8 ± 6.7 | 96.1 ± 40.8 | 47 ± 14.9 | - |
Eco | 508.8 ± 24.0 | 150.6 ± 28.6 | 101.7 ± 46.5 | 165.5 ± 124.6 | 83.1 ± 43.0 |
K | 159.5 ± 90.9 | 104 ± 21.6 | 40.1 ± 13.9 | 18.1 ± 13.5 | - |
Tensile Modulus, MPa | |||||
---|---|---|---|---|---|
Sample Name/ Months | 0 | 1 | 2 | 3 | 4 |
B0 | 98.1 ± 24.5 | 103.7 ± 17.3 | 91.8 ± 16.2 | 119.4 ± 20.8 | 103.4 ± 5.8 |
SP | 73.9 ± 11.8 | 102.3 ± 2.3 | 105.5 ± 14.3 | 113.1 ± 27.9 | - |
SW | 151.3 ± 28.8 | 123.7 ± 26.5 | 133.6 ± 27.9 | 144.5 ± 10.1 | 116.3 ± 17.1 |
B1 | 105.2 ± 14.5 | 128.3 ± 19.2 | 122.4 ± 19.9 | 130.6 ± 10.0 | - |
B2 | 100.5 ± 11.1 | 119.2 ± 21.5 | 118.1 ± 25.4 | 121.1 ± 48.7 | - |
Eco | 182.3 ± 41.0 | 199.2 ± 55.3 | 243.7 ± 36.2 | 153 ± 40.7 | 230 ± 56.0 |
K | 153.7 ± 0.6 | 151.8 ± 8.7 | 176.2 ± 23.8 | 106.6 ± 15.8 | - |
Tensile-Impact Strength, kJ/m2 | |||||
---|---|---|---|---|---|
Sample Name/ Months | 0 | 1 | 2 | 3 | 4 |
B0 | 414.4 ± 117.6 | 331.7 ± 121.2 | 448.6 ± 53.4 | 329.5 ± 57.2 | 379.5 ± 46.5 |
SP | 1156.8 ± 226.1 | 1444.2 ± 16.5 | 940.5 ± 149.7 | 1070.8 ± 89.4 | - |
SW | 619.1 ± 83.0 | 749.9 ± 63.2 | 406.6 ± 89.6 | 506.4 ± 43.9 | 358 ± 102.1 |
B1 | 234.1 ± 8.1 | 292.1 ± 48.6 | 257.8 ± 48.2 | 266 ± 50.3 | - |
B2 | 807 ± 121.1 | 578.9 ± 50.7 | 662.9 ± 33.8 | 690.2 ± 38.1 | - |
Eco | 664 ± 143.6 | 640.9 ± 273.6 | 826 ± 14.1 | 651.5 ± 53.0 | 487 ± 88.9 |
K | 654.8 ± 12.9 | 584.7 ± 61.5 | 641.7 ± 120.6 | 421.8 ± 194.2 | - |
T95 (°C) | Tmax (°C) | r600 (%) | |
---|---|---|---|
B0_0 | 238.8 | 390.3 | 11.4 |
B0_3 | 252.7 | 395.2 | 6.2 |
B1_0 | 261.4 | 411.0 | 11.0 |
B1_3 | 253.2 | 411.3 | 6.9 |
Eco_0 | 293.2 | 401.6 | 28.0 |
Eco_3 | 318.9 | 405.2 | 17.9 |
K_0 | 260.5 | 410.3 | 12.8 |
K_3 | 259.1 | 410.4 | 11.3 |
SW_0 | 260.3 | 408.6 | 7.0 |
SW_3 | 234.3 | 413.9 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rujnić Havstad, M.; Juroš, L.; Katančić, Z.; Pilipović, A. Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films. Polymers 2021, 13, 2785. https://doi.org/10.3390/polym13162785
Rujnić Havstad M, Juroš L, Katančić Z, Pilipović A. Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films. Polymers. 2021; 13(16):2785. https://doi.org/10.3390/polym13162785
Chicago/Turabian StyleRujnić Havstad, Maja, Ljerka Juroš, Zvonimir Katančić, and Ana Pilipović. 2021. "Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films" Polymers 13, no. 16: 2785. https://doi.org/10.3390/polym13162785
APA StyleRujnić Havstad, M., Juroš, L., Katančić, Z., & Pilipović, A. (2021). Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films. Polymers, 13(16), 2785. https://doi.org/10.3390/polym13162785