Understanding the Reinforcement of Graphene in Poly(Ether Ether Ketone)/Carbon Fibre Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEEK/Carbon Fibre Laminates
2.3. Characterization
3. Results and Discussion
3.1. Influence of Graphene on the Thermal Behaviour
3.2. Mechanical Properties by Nanoindentation
3.2.1. Mapping at the Tow Front
3.2.2. Graphene Reinforcement in the Polymer Layer
3.3. Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
List of Symbols and Nomenclature
CF | Carbon fibre |
DSC | Differential scanning calorimetry |
E′ | Storage modulus |
G | Graphene |
GPEI | Graphene modified with PEI (55/45 PEI/graphene weight ratio) |
GSPEEK | Graphene modified with SPEEK (55/45 SPEEK/graphene weight ratio) |
PEEK | Poly(ether ether ketone) |
PEEK/CF | Laminate alternating PEEK and CF |
PEEK-GPEI | PEEK nanocomposite including 3 wt.% of graphene and 3 wt.% of PEI |
PEEK-GPEI/CF | Laminate alternating PEEK-GPEI and CF |
PEEK-GSPEEK | PEEK nanocomposite including 5 wt.% graphene and 5 wt.% SPEEK |
PEEK-GSPEEK/CF | Laminate alternating PEEK-GSPEEK and CF |
PEI | Polyetherimide |
SPEEK | Sulfonated PEEK |
σ | Electrical conductivity |
h | Indenter displacement |
Ti | Degradation temperature at 5% weight loss |
Tm | Melting temperature |
TGA | Thermogravimetric analysis |
Xc | Degree of crystallinity |
References
- McCrary-Dennis, M.C.; Okoli, O.I. A review of multiscale composite manufacturing and challenges. J. Reinf. Plast. Compos. 2012, 31, 1687–1711. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, L.; Zhang, Z.; Friedrich, K. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—A review. Compos. Sci. Technol. 2013, 86, 26–37. [Google Scholar] [CrossRef]
- Borowski, E.; Soliman, E.; Kandil, U.F.; Taha, M.R. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 2015, 7, 1020–1045. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 2017, 75, 73–107. [Google Scholar] [CrossRef]
- Bakis, G.; Wendel, J.-F.; Zeiler, R.; Aksit, A.; Häublein, M.; Demleitner, M.; Benra, J.; Forero, S.; Schütz, W.; Altstädt, V. Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates. Polymers 2021, 13, 770. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Naffakh, M.; Marco, C.; Ellis, G.; Gómez-Fatou, M.A. High-performance nanocomposites based on polyetherketones. Prog. Mater. Sci. 2012, 57, 1106–1190. [Google Scholar] [CrossRef]
- Vieille, B.; Casado, V.; Bouvet, C. Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: A comparative study. Compos. Struct. 2014, 110, 207–218. [Google Scholar] [CrossRef]
- Gonzalez, J.D.P.; Vieille, B.; Bouvet, C. High temperature translaminar fracture of woven-ply thermoplastic laminates in tension and in compression. Eng. Fract. Mech. 2021, 246, 107616. [Google Scholar] [CrossRef]
- Hernandez, T.P.; Mills, A.R.; Nezhad, H.Y. Shear driven deformation and damage mechanisms in High-performance carbon Fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading. Compos. Struct. 2021, 261, 113289. [Google Scholar] [CrossRef]
- Martin, I.; Del Castillo, D.S.; Fernandez, A.; Güemes, A. Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. J. Compos. Sci. 2020, 4, 149. [Google Scholar] [CrossRef]
- Yao, C.; Qi, Z.; Chen, W.; Zhang, C. Experimental study on CF/PEEK thermoplastic fastener: Effects of fastener matrix crystallinity and fibre content on the strength of single-lap joint. Compos. Part B Eng. 2021, 213, 108737. [Google Scholar] [CrossRef]
- Li, S.; Leng, D.; Li, W.; Qie, L.; Dong, Z.; Cheng, Z.; Fan, Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 2020, 27, 279–296. [Google Scholar] [CrossRef]
- Li, S.; Fan, Z. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Mater. 2021, 34, 107–127. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation Assessment of the Interphase in Carbon Nanotube-Based Hierarchical Composites. J. Phys. Chem. C 2012, 116, 24193–24200. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Ashrafi, B.; Naffakh, M.; Gonzalez-Dominguez, J.M.; Johnston, A.; Simard, B.; Martínez, M.T.; Gómez-Fatou, M.A. Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon 2011, 49, 2817–2833. [Google Scholar] [CrossRef] [Green Version]
- Hassan, E.A.; Yang, L.; Elagib, T.H.; Ge, D.; Lv, X.; Zhou, J.; Yu, M.; Zhu, S. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites. Compos. Part. B Eng. 2019, 171, 70–77. [Google Scholar] [CrossRef]
- Hassan, E.A.; Ge, D.; Zhu, S.; Yang, L.; Zhou, J.; Yu, M. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105613. [Google Scholar] [CrossRef]
- Lyu, H.; Jiang, N.; Li, Y.; Lee, H.; Zhang, D. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes. Compos. Part. A Appl. Sci. Manuf. 2021, 145, 106364. [Google Scholar] [CrossRef]
- Lyu, H.; Jiang, N.; Li, Y.; Zhang, D. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes. Compos. Sci. Technol. 2021, 210, 108831. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Kuila, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2011, 41, 666–686. [Google Scholar] [CrossRef]
- Papageorgiou, D.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2018, 54, 5992–6026. [Google Scholar] [CrossRef]
- Enrique-Jimenez, P.; Quiles-Díaz, S.; Salavagione, H.; Wesner, D.; Schönherr, H.; González-Casablanca, J.; García-Quismondo, R.; Martínez, G.; Gómez-Fatou, M.; Ania, F.; et al. Control of the structure and properties of SEBS nanocomposites via chemical modification of graphene with polymer brushes. Eur. Polym. J. 2017, 97, 1–13. [Google Scholar] [CrossRef]
- Shen, X.; Zheng, Q.; Kim, J.-K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708. [Google Scholar] [CrossRef]
- Song, H.; Li, N.; Li, Y.; Min, C.; Wang, Z. Preparation and tribological properties of graphene/poly(ether ether ketone) nanocomposites. J. Mater. Sci. 2012, 47, 6436–6443. [Google Scholar] [CrossRef]
- Steurer, P.; Wissert, R.; Thomann, R.; Mülhaupt, R. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol. Rapid Commun. 2009, 30, 316–327. [Google Scholar] [CrossRef]
- Rafiee, M.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, S.; Chen, Z.; Guo, Y.; Luan, J.; Geng, Z.; Wang, G. Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity. J. Mater. Sci. 2013, 49, 2372–2382. [Google Scholar] [CrossRef]
- Martínez-Gómez, A.; Quiles-Díaz, S.; Enrique-Jimenez, P.; Flores, A.; Ania, F.; Gómez-Fatou, M.A.; Salavagione, H.J. Searching for effective compatibilizing agents for the preparation of poly(ether ether ketone)/graphene nanocomposites with enhanced properties. Compos. A 2018, 113, 180–188. [Google Scholar] [CrossRef]
- Chen, B.; Berretta, S.; Evans, K.; Smith, K.; Ghita, O. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering. Appl. Surf. Sci. 2018, 428, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Puértolas, J.; Castro, M.; Morris, J.; Ríos, R.; Ansón-Casaos, A. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites. Carbon 2019, 141, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Alvaredo, Á; Martín, M.I.; Castell, P.; De Villoria, R.G.; Fernández-Blázquez, J.P. Non-Isothermal Crystallization Behavior of PEEK/Graphene Nanoplatelets Composites from Melt and Glass States. Polymers 2019, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papageorgiou, D.G.; Liu, M.; Li, Z.; Valles, C.; Young, R.J.; Kinloch, I.A. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Compos. Sci. Technol. 2019, 175, 60–68. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, L.; Zhang, X.; Li, M.; Chang, Y.; Shang, L.; Ao, Y. Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene. RSC Adv. 2015, 5, 57853–57859. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Zhao, Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos. Sci. Technol. 2018, 154, 175–186. [Google Scholar] [CrossRef]
- Enrique-Jimenez, P.; Quiles-Díaz, S.; Salavagione, H.J.; Fernández-Blázquez, J.P.; Monclús, M.A.; Guzman de Villoria, R.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation mapping of Multiscale composites of graphene-reinforced polypropylene and carbon fibres. Compos. Sci. Technol. 2019, 169, 151–157. [Google Scholar] [CrossRef]
- Blundell, D.; Osborn, B. The morphology of poly(aryl-ether-ether-ketone). Polymers 1983, 24, 953–958. [Google Scholar] [CrossRef]
- Herbert, E.G.; Oliver, W.C.; Pharr, G.M. Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Naffakh, M.; Ellis, G.; Gómez, M.; Marco, C. Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polym. Degrad. Stab. 1999, 66, 405–413. [Google Scholar] [CrossRef]
- Hay, J.; Kemmish, D. Thermal decomposition of poly(aryl ether ketones). Polymers 1987, 28, 2047–2051. [Google Scholar] [CrossRef]
- Rezaei, F.; Yunus, R.; Ibrahim, N.A.; Mahdi, E.S. Development of Short-Carbon-Fiber-Reinforced Polypropylene Composite for Car Bonnet. Polym. Technol. Eng. 2008, 47, 351–357. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, S.; Zhang, X.; Zhao, Z.; Jing, D. Preparation and properties of carbon nanotubes/carbonfiber/poly (etherether ketone) multiscale composites. Compos. A 2018, 108, 89–98. [Google Scholar] [CrossRef]
Sample | G Content (wt.%) a | CF Content (wt.%) | Ti (°C) | First Heating | ||
---|---|---|---|---|---|---|
Nitrogen | Air | Xc (%) | Tm (°C) | |||
PEEK b | 0 | 582 ± 1 | 574 ± 1 | 37 ± 2 | 346 ± 1 | |
PEEK/CF | 0 | 70 | 586 ± 1 | 582 ± 1 | 42 ± 2 | 342 ± 1 |
PEEK-GPEI b | 3 | 572 ± 1 | 566 ± 1 | 34 ± 2 | 341 ± 1 | |
PEEK-GPEI/CF | 3 | 67 | 578 ± 1 | 576 ± 1 | 32 ± 2 | 345 ± 1 |
PEEK-GSPEEK b | 5 | 579 ± 1 | 549 ± 1 | 38 ± 2 | 341 ± 1 | |
PEEK-GSPEEK/CF | 5 | 67 | 589 ± 1 | 569 ± 1 | 33 ± 2 | 345 ± 1 |
Sample | G Content (wt.%) | E′ (GPa) | |
---|---|---|---|
Free-Standing Film | Polymer Layer in the Laminate | ||
PEEK | 0 | 5.0 ± 0.1 | |
PEEK/CF | 0 | 4.5 ± 0.4 | |
PEEK-GPEI | 3 | 5.3 ± 0.2 (6%) | |
PEEK-GPEI/CF | 3 | 5.2 ± 0.6 (16%) | |
PEEK-GSPEEK | 5 | 6.4 ± 0.3 (28%) | |
PEEK-GSPEEK/CF | 5 | 6.0 ± 0.7 (33%) |
Sample | G Content (wt.%) | σ (S.cm−1) | ||
---|---|---|---|---|
Free-Standing Film | Laminates | |||
In-Plane | Out-of-Plane | |||
PEEK | 0 | |||
PEEK/CF | 0 | 37 ± 15 | (2.1 ± 0.7)·10−4 | |
PEEK-GPEI | 3 | (2.4 ± 0.1)·10−4 | ||
PEEK-GPEI/CF | 3 | 99 ± 18 | (2.1 ± 0.8)·10−4 | |
PEEK-GSPEEK | 5 | (2.2 ± 0.1)·10−2 | ||
PEEK-GSPEEK/CF | 5 | 50 ± 16 | (3.4 ± 0.8)·10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, A.; Quiles-Díaz, S.; Enrique-Jimenez, P.; Martínez-Gómez, A.; Gómez-Fatou, M.A.; Salavagione, H.J. Understanding the Reinforcement of Graphene in Poly(Ether Ether Ketone)/Carbon Fibre Laminates. Polymers 2021, 13, 2440. https://doi.org/10.3390/polym13152440
Flores A, Quiles-Díaz S, Enrique-Jimenez P, Martínez-Gómez A, Gómez-Fatou MA, Salavagione HJ. Understanding the Reinforcement of Graphene in Poly(Ether Ether Ketone)/Carbon Fibre Laminates. Polymers. 2021; 13(15):2440. https://doi.org/10.3390/polym13152440
Chicago/Turabian StyleFlores, Araceli, Susana Quiles-Díaz, Patricia Enrique-Jimenez, Aránzazu Martínez-Gómez, Marián A. Gómez-Fatou, and Horacio J. Salavagione. 2021. "Understanding the Reinforcement of Graphene in Poly(Ether Ether Ketone)/Carbon Fibre Laminates" Polymers 13, no. 15: 2440. https://doi.org/10.3390/polym13152440