Proof-of-Concept of Detection of Counterfeit Medicine through Polymeric Materials Analysis of Plastics Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. ATR-FTIR Analysis
2.2.2. DSC Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Plastic Market Size, Share & Trends Report Plastic Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Application, By End-use, By Region, And Segment Forecasts, 2021–2028; Grand View Research: San Francisco, CA, USA, 2021. [Google Scholar]
- McKeen, L.W. 1-Introduction to use of plastics in food packaging A2-Ebnesajjad, Sina. In Plastic Films in Food Packaging; William Andrew Publishing: Oxford, UK, 2013; pp. 1–15. [Google Scholar]
- Stuart, B.H. Polymer Analysis; John Wiley: New York, NY, USA, 2002. [Google Scholar]
- Newton, P.N.; Green, M.D.; Fernández, F.M.; Day, N.P.J.; White, N.J. Counterfeit anti-infective drugs. Lancet Infect. Dis. 2006, 6, 602–613. [Google Scholar] [CrossRef]
- Ozawa, S.; Evans, D.R.; Bessias, S.; Haynie, D.G.; Yemeke, T.T.; Laing, S.K.; Herrington, J.E. Prevalence and Estimated Economic Burden of Substandard and Falsified Medicines in Low- and Middle-Income Countries: A Systematic Review and Meta-analysisPrevalence of Low-Quality Drugs in Low- and Middle-Income CountriesPrevalence of Low-Quality Drugs in Low- and Middle-Income Countries. JAMA Netw. Open 2018, 1, e181662. [Google Scholar]
- Almuzaini, T.; Choonara, I.; Sammons, H. Substandard and counterfeit medicines: A systematic review of the literature. BMJ Open 2013, 3, e002923. [Google Scholar] [CrossRef] [PubMed]
- International Regulatory Harmonization. WHO Drug Inf. 2012, 26, 339–361.
- World Health Organization. WHO Global Surveillance and Monitoring System for Substandard and Falsified Medical Products; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Bolla, A.S.; Patel, A.R.; Priefer, R. The silent development of counterfeit medications in developing countries–A systematic review of detection technologies. Int. J. Pharm. 2020, 587, 119702. [Google Scholar] [CrossRef]
- Akunyili, D.N.; Nnani, I.P.C. Risk of medicines: Counterfeit drugs. Int. J. Risk Saf. Med. 2004, 16, 181–190. [Google Scholar]
- de Veij, M.; Vandenabeele, P.; Hall, K.A.; Fernandez, F.M.; Green, M.D.; White, N.J.; Dondorp, A.M.; Newton, P.N.; Moens, L. Fast detection and identification of counterfeit antimalarial tablets by Raman spectroscopy. J. Raman Spectrosc. 2007, 38, 181–187. [Google Scholar] [CrossRef]
- Guillemain, A.; Dégardin, K.; Roggo, Y. Performance of NIR handheld spectrometers for the detection of counterfeit tablets. Talanta 2017, 165, 632–640. [Google Scholar] [CrossRef]
- Dégardin, K.; Roggo, Y.; Margot, P. Forensic intelligence for medicine anti-counterfeiting. Forensic Sci. Int. 2015, 248, 15–32. [Google Scholar] [CrossRef]
- Ortiz, R.S.; Mariotti, K.d.C.; Fank, B.; Limberger, R.P.; Anzanello, M.J.; Mayorga, P. Counterfeit Cialis and Viagra fingerprinting by ATR-FTIR spectroscopy with chemometry: Can the same pharmaceutical powder mixture be used to falsify two medicines? Forensic Sci. Int. 2013, 226, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Miloudi, L.; Bonnier, F.; Barreau, K.; Bertrand, D.; Perse, X.; Yvergnaux, F.; Byrne, H.J.; Chourpa, I.; Munnier, E. ATR-IR coupled to partial least squares regression (PLSR) for monitoring an encapsulated active molecule in complex semi-solid formulations. Analyst 2018, 143, 2377–2389. [Google Scholar] [CrossRef]
- Pereira, T.M.; Júnior, J.A.; Ortiz, R.S.; Rocha, W.F.; Endringer, D.C.; Filgueiras, P.R.; Poppi, R.J.; Romão, W. Viagra® and Cialis® blister packaging fingerprinting using Fourier transform infrared spectroscopy (FTIR) allied with chemometric methods. Anal. Methods 2014, 6, 2722–2728. [Google Scholar] [CrossRef]
- Marcelo, M.C.A.; Mariotti, K.C.; Ferrão, M.F.; Ortiz, R.S. Profiling cocaine by ATR–FTIR. Forensic Sci. Int. 2015, 246, 65–71. [Google Scholar] [CrossRef]
- Coelho Neto, J.; Lisboa, F.L.C. ATR-FTIR characterization of generic brand-named and counterfeit sildenafil- and tadalafil-based tablets found on the Brazilian market. Sci. Justice J. Forensic Sci. Soc. 2017, 57, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Riga, A.T.; Alexander, K.S. Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals. Thermochim. Acta 2002, 392–393, 399–404. [Google Scholar] [CrossRef]
- Clas, S.-D.; Dalton, C.R.; Hancock, B.C. Differential scanning calorimetry: Applications in drug development. Pharm. Sci. Technol. Today 1999, 2, 311–320. [Google Scholar] [CrossRef]
- Santos, M.K.; de Cassia Mariotti, K.; Kahmann, A.; Anzanello, M.J.; Ferrão, M.F.; de Araújo Gomes, A.; Limberger, R.P.; Ortiz, R.S. Comparison between counterfeit and authentic medicines: A novel approach using differential scanning calorimetry and hierarchical cluster analysis. J. Pharm. Biomed. Anal. 2019, 166, 304–309. [Google Scholar] [CrossRef]
- Wilczyński, S. The use of dynamic thermal analysis to distinguish between genuine and counterfeit drugs. Int. J. Pharm. 2015, 490, 16–21. [Google Scholar] [CrossRef]
- Maria, J.; Noordin, M.I. Fast detection of sildenafil in adulterated commercial products using differential scanning calorimetry. J. Therm. Anal. Calorim. 2014, 115, 1907–1914. [Google Scholar] [CrossRef] [Green Version]
- Lord, A.W. Food and nutritional analysis: Packaging materials. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Chen, C.; Ding, R.; Yang, S.; Wang, J.; Chen, W.; Zong, L.; Xie, J. Development of thermal insulation packaging film based on poly(vinyl alcohol) incorporated with silica aerogel for food packaging application. LWT 2020, 129, 109568. [Google Scholar] [CrossRef]
- Montoille, L.; Morales Vicencio, C.; Fontalba, D.; Ortiz, J.A.; Moreno-Serna, V.; Peponi, L.; Matiacevich, S.; Zapata, P.A. Study of the effect of the addition of plasticizers on the physical properties of biodegradable films based on kefiran for potential application as food packaging. Food Chem. 2021, 360, 129966. [Google Scholar] [CrossRef] [PubMed]
- Purcar, V.; Rădițoiu, V.; Rădițoiu, A.; Manea, R.; Raduly, F.M.; Ispas, G.C.; Frone, A.N.; Nicolae, C.A.; Gabor, R.A.; Anastasescu, M.; et al. Preparation and Characterization of Some Sol-Gel Modified Silica Coatings Deposited on Polyvinyl Chloride (PVC) Substrates. Coatings 2021, 11, 11. [Google Scholar] [CrossRef]
- Jung, M.; Horgen, D.; Orski, S.C.V.; Beers, K.; Balazs, G.; Jones, T.; Work, T.; Brignac, K.; Royer, S.-J.; Hyrenbach, D.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2017, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Joshi, G.; Mukherjee, A.; Thomas, P. Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites. Polym. Int. 2016, 65, 1098–1106. [Google Scholar] [CrossRef]
- Wypych, G. 2-PVC properties. In PVC Formulary, 3rd ed.; Wypych, G., Ed.; ChemTec Publishing: Toronto, ON, Canada, 2020; pp. 5–45. [Google Scholar]
- Chen, J.; Nie, X.; Jiang, J.; Zhou, Y. Thermal Degradation and Plasticizing Mechanism of Poly(vinyl chloride) Plasticized with A Novel Cardanol Derived Plasticizer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 292, 012008. [Google Scholar] [CrossRef]
- Kollár, M.; Zsoldos, G. Investigating poly-(vinyl-chloride)-polyethylene blends by thermal methods. J. Therm. Anal. Calorim. 2012, 107, 645–650. [Google Scholar] [CrossRef]
- Najafi, V.; Abdollahi, H. Internally plasticized PVC by four different green plasticizer compounds. Eur. Polym. J. 2020, 128, 109620. [Google Scholar] [CrossRef]
- Yang, L.; Thomas, P.; Stuart, B. Discrimination of thermally treated low density polyethylenes using DSC and principal component analysis. J. Therm. Anal. Calorim. 2012, 108, 445–448. [Google Scholar] [CrossRef]
Code | Sample Type | Description |
---|---|---|
A | Original | Blister of 8 × 500 mg paracetamol caplets |
A1 | Counterfeit | Blister of 8 × 500 mg paracetamol caplets |
B | Original | Blister of 6 × 500 mg paracetamol caplets |
B1 | Counterfeit | Blister of 6 × 500 mg paracetamol caplets |
C | Original | Blister of 4 × 100 mg sildenafil tablet |
C1 | Counterfeit | Blister of 4 × 100 mg sildenafil tablet |
Product 1 | Product 2 | Product 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sampel A | Sampel A1 | Sampel B | Sampel B1 | Sampel C | Sampel C1 | ||||||
Wave Number (cm−1) | Functional Group | Wave Number (cm−1) | Functional Group | Wave Number (cm−1) | Functional Group | Wave Number (cm−1) | Functional Group | Wave Number (cm−1) | Functional Group | Wave Number (cm−1) | Functional Group |
503 | C–CI | 503 | C–CI | 524 | C–CI | 523 | C–CI | 518 | C–CI | 523 | C–CI |
609 | C–Cl | 609 | C–Cl | 610 | C–Cl | 612 | C–Cl | 612 | C–Cl | 610 | C–Cl |
681 | C–Cl | 679 | C–Cl | 682 | C–CI | 697 | C–CI | 694 | C–Cl | 698 | C–Cl |
964 | CH2 | 964 | CH2 | 964 | CH2 | 964 | CH2 | 962 | CH2 | 964 | CH2 |
1093 | C–C | 1093 | C–C | 1096 | C–C | 1096 | C–C | 1096 | C–C | 1096 | C–C |
1252 | CH | 1251 | CH | 1252 | CH | 1252 | CH | 1252 | CH | 1252 | CH |
1330 | CH2 | 1328 | CH2 | 1330 | CH2 | 1330 | CH2 | 1330 | CH2 | 1328 | CH2 |
1426 | CH2 | 1426 | CH2 | 1426 | CH2 | 1426 | CH2 | 1426 | CH2 | 1426 | CH2 |
2913 | CH2 | 2913 | CH2 | 2914 | CH2 | 2918 | CH2 | 2915 | CH2 | 2918 | CH2 |
Product | The Onset of Melting (°C) | The Peak of Melting (°C) | End of Melting (°C) | ∆H (J/g) | |
---|---|---|---|---|---|
A | X1 | 254.52 ± 2.73 | 255.91 ± 1.06 | 256.682 ± 1.20 | 7.039 ± 1.74 |
X2 | 289.70 ± 2.29 | 293.40 ± 2.12 | 298.35 ± 2.08 | 1168.51 ± 198.83 | |
A1 | Y1 | 267.09 ± 1.34 | 267.47 ± 1.23 | 268.77 ± 1.22 | 6.52 ± 1.31 |
Y2 | 304.03 ± 4.00 | 308.02 ± 2.11 | 313.74 ± 1.56 | 1254.20 ± 219.37 | |
B | X1 | 239.45 ± 1.08 | 239.92 ± 1.06 | 241.48 ± 1.10 | 8.74 ± 1.70 |
X2 | 283.17 ± 12.6 | 287.18 ± 12.01 | 291.91 ± 12.61 | 1372.09 ± 335.71 | |
B1 | Y1 | 264.00 ± 2.13 | 265.23 ± 2.23 | 274.57 ± 15.15 | 4.19 ± 1.14 |
Y2 | 295.06 ± 4.00 | 299.13 ± 3.88 | 302.74 ± 4.62 | 1188.72 ± 240.41 | |
C | X1 | 268.14 ± 1.08 | 271.45 ± 2.12 | 273.27 ± 2.24 | 7.23 ± 1.70 |
X2 | 290.62 ± 5.88 | 294.05 ± 5.78 | 298.74 ± 5.75 | 674.60 ± 129.12 | |
C1 | Y1 | 281.23 ± 3.01 | 283.59 ± 1.68 | 284.89 ± 2.75 | 8.23 ± 1.44 |
Y2 | 297.55 ± 1.41 | 299.79 ± 1.67 | 302.53 ± 2.12 | 488.03 ± 143.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, M.R.; Widodo, R.T.; Noordin, M.I. Proof-of-Concept of Detection of Counterfeit Medicine through Polymeric Materials Analysis of Plastics Packaging. Polymers 2021, 13, 2185. https://doi.org/10.3390/polym13132185
Salim MR, Widodo RT, Noordin MI. Proof-of-Concept of Detection of Counterfeit Medicine through Polymeric Materials Analysis of Plastics Packaging. Polymers. 2021; 13(13):2185. https://doi.org/10.3390/polym13132185
Chicago/Turabian StyleSalim, Mohammad Rizalmazli, Riyanto Teguh Widodo, and Mohamed Ibrahim Noordin. 2021. "Proof-of-Concept of Detection of Counterfeit Medicine through Polymeric Materials Analysis of Plastics Packaging" Polymers 13, no. 13: 2185. https://doi.org/10.3390/polym13132185
APA StyleSalim, M. R., Widodo, R. T., & Noordin, M. I. (2021). Proof-of-Concept of Detection of Counterfeit Medicine through Polymeric Materials Analysis of Plastics Packaging. Polymers, 13(13), 2185. https://doi.org/10.3390/polym13132185