Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Water Absorption
3.2. Tensile Testing
3.3. Failure Analysis
3.4. Differential Scanning Calorimetry (DSC) Test
3.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamali, J.; Mourad, A.-H.I.; Fan, Y.; Wood, J.T. Through-thickness fracture behavior of unidirectional glass fibers/epoxy composites under various in-plane loading using the CTS test. Eng. Fract. Mech. 2016, 156, 83–95. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Al Mansoori, M.S.; Al Marzooqi, L.A.; Genena, F.A.; Cherupurakal, N. Optimization of curing conditions and nanofiller incorporation for production of high performance laminated Kevlar/epoxy nanocomposites. In Proceedings of the ASME 2018 Pressure Vessels and Piping Conference, Prague, Czech Republic, 15–20 July 2018. [Google Scholar]
- Idrisi, A.H.; Ismail Mourad, A.-H.I.; Abdel-Magid, B.; Mozumder, M.; Afifi, Y. Impact of the Harsh Environment on E-Glass Epoxy Composite. In Proceedings of the ASME 2019 Pressure Vessels & Piping Conference, San Antonio, TX, USA, 14–19 July 2019; Volume 6A. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Fouad, H.; Mourad, A.-H.I.; ALshammari, B.A.; Hassan, M.K.; Abdallah, M.Y.; Hashem, M. Fracture toughness, vibration modal analysis and viscoelastic behavior of Kevlar, glass, and carbon fiber/epoxy composites for dental-post applications. J. Mech. Behav. Biomed. Mater. 2020, 101, 103456. [Google Scholar] [CrossRef] [PubMed]
- Mourad, A.-H.I.; Abdel-Magid, B. Durability of Thermoset Composites in Seawater Environment. In Proceedings of the CAMX 2015, Dallas, TX, USA, 26–29 October 2015. [Google Scholar]
- Maggana, C.; Pissis, P. Water sorption and diffusion studies in an epoxy resin system. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1165–1182. [Google Scholar] [CrossRef]
- Gonon, P.; Sylvestre, A.; Teysseyre, J.; Prior, C. Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites. Mater. Sci. Eng. B 2001, 83, 158–164. [Google Scholar] [CrossRef]
- Yilmaz, T.; Sinmazcelik, T. Effects of hydrothermal aging on glass–fiber/polyetherimide (PEI) composites. J. Mater. Sci. 2010, 45, 399–404. [Google Scholar] [CrossRef]
- Gautier, L.; Mortaigne, B.; Bellenger, V. Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites. Compos. Sci. Technol. 1999, 59, 2329–2337. [Google Scholar] [CrossRef]
- Al-Kuwaiti, M.H.; Mourad, A.-H.I. Thermomechanical characteristics of compacted and noncompacted plain weave woven laminated composites. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume 3A. [Google Scholar] [CrossRef]
- Al-Kuwaiti, M.H.H.; Mourad, A.-H.I. Effect of different environmental conditions on the mechanical behavior of plain weave woven laminated composites. Procedia Eng. 2015, 130, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.-H.I.; Abdel-Magid, B.M.; El-Maaddawy, T.; Grami, M.E. Effect of seawater and warm environment on glass/epoxy and glass/polyurethane composites. Appl. Compos. Mater. 2010, 17, 557–573. [Google Scholar] [CrossRef]
- Zheng, Q.; Morgan, R.J. Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. J. Compos. Mater. 1993, 27, 1465–1478. [Google Scholar] [CrossRef]
- De’Nève, B.; Shanahan, M.E.R. Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra. Polymer 1993, 34, 5099–5105. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Delamar, M.; Shanahan, M.E.R. Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging. J. Appl. Polym. Sci. 1997, 65, 449–458. [Google Scholar] [CrossRef]
- Hodzic, A.; Kim, J.K.; Lowe, A.E.; Stachurski, Z.H. The effects of water aging on the interphase region and interlaminar fracture toughness in polymer–glass composites. Compos. Sci. Technol. 2004, 64, 2185–2195. [Google Scholar] [CrossRef]
- Ellyin, F.; Maser, R. Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos. Sci. Technol. 2004, 64, 1863–1874. [Google Scholar] [CrossRef]
- Mourad, A.-H.I. Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Idrisi, A.H.; Zaaroura, N.; Sherif, M.M.; Fouad, H. Damage assessment of nanofiller-reinforced woven kevlar KM2plus/Epoxy resin laminated composites. Polym. Test. 2020, 86, 106501. [Google Scholar] [CrossRef]
- Fan, X.J.; Lee, S.W.R.; Han, Q. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab. 2009, 49, 861–871. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Zaaroura, N. Impact of nanofillers incorporation on laminated nanocomposites performance. J. Mater. Eng. Perform. 2018, 27, 4453–4461. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Chu, W. Degradation kinetics of pultruded E-glass/vinylester in alkaline media. ACI Mater. J. 2005, 102, 34. [Google Scholar]
- Gellert, E.P.; Turley, D.M. Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1259–1265. [Google Scholar] [CrossRef]
- Pavan, A.; Dayananda, P.; Vijaya, K.M.; Hegde, S.; Hosagade, P.N. Influence of seawater absorption on vibrational and tensile characteristics of quasi-isotropic glass/epoxy composites. J. Mater. Res. Technol. 2019, 8, 1427–1433. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Constr. Build. Mater. 2015, 99, 118–127. [Google Scholar] [CrossRef]
- Silva, M.A.G.; da Fonseca, B.S.; Biscaia, H. On estimates of durability of FRP based on accelerated tests. Compos. Struct. 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Merah, N.; Nizamuddin, S.; Khan, Z.; Al-Sulaiman, F.; Mehdi, M. Effects of harsh weather and seawater on glass fiber reinforced epoxy composite. J. Reinf. Plast. Compos. 2010, 29, 3104–3110. [Google Scholar] [CrossRef]
- Chakraverty, A.P.; Mohanty, U.K.; Mishra, S.C.; Satapathy, A. Sea water ageing of GFRP composites and the dissolved salts. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 75, p. 12029. [Google Scholar]
- Chen, Y.; Davalos, J.F.; Ray, I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests. J. Compos. Constr. 2006, 10, 279–286. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Idrisi, A.H.; Wrage, M.C.; Abdel-Magid, B.M. Long-term durability of thermoset composites in seawater environment. Compos. Part B Eng. 2019, 168, 243–253. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Lang, A.W.; Zhang, Y.; Nutt, S.R. Water immersion aging of polydicyclopentadiene resin and glass fiber composites. Polym. Degrad. Stab. 2016, 124, 35–42. [Google Scholar] [CrossRef]
- Guermazi, N.; Tarjem, A.B.; Ksouri, I.; Ayedi, H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B Eng. 2016, 85, 294–304. [Google Scholar] [CrossRef]
- Bobbaa, S.; Lemana, Z.; Zainudina, E.S.; Sapuana, S.M. The influence of hydrothermal aging on E-glass and S-glass fiber/epoxyreinforced composite pipes. J. Mater. Environ. Sci. 2019, 10, 790–804. [Google Scholar]
- Feng, P.; Wang, J.; Wang, Y.; Loughery, D.; Niu, D. Effects of corrosive environments on properties of pultruded GFRP plates. Compos. Part B Eng. 2014, 67, 427–433. [Google Scholar] [CrossRef]
- Deniz, M.E.; Karakuzu, R. Seawater effect on impact behavior of glass–epoxy composite pipes. Compos. Part B Eng. 2012, 43, 1130–1138. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros. Sci. 2011, 53, 426–431. [Google Scholar] [CrossRef]
- Antunes, M.B.; Almeida, J.H.S., Jr.; Amico, S.C. Curing and seawater aging effects on mechanical and physical properties of glass/epoxy filament wound cylinders. Compos. Commun. 2020, 22, 100517. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N. Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment. Mater. Lett. 2020, 261, 127091. [Google Scholar] [CrossRef]
- D3039 ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM Int: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Ray, B.C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interface Sci. 2006, 298, 111–117. [Google Scholar] [CrossRef]
- Akbar, S.; Zhang, T. Moisture diffusion in carbon/epoxy composite and the effect of cyclic hygrothermal fluctuations: Characterization by Dynamic Mechanical Analysis (DMA) and Interlaminar Shear Strength (ILSS). J. Adhes. 2008, 84, 585–600. [Google Scholar] [CrossRef]
- Patel, S.R.; Case, S.W. Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions. Int. J. Fatigue 2002, 24, 1295–1301. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Huang, L.; Wang, K.; Huang, X. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 2016, 99, 477–489. [Google Scholar] [CrossRef]
- Almudaihesh, F.; Holford, K.; Pullin, R.; Eaton, M. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance. Compos. Part B Eng. 2020, 182, 107626. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Alnaqbi, A.H. Load Frame Testing Device Adapted to Test Different Environmental Conditions. U.S. Patent 10,132,731, 20 November 2018. [Google Scholar]
- Mourad, A.-H.I.; Alnaqbi, A.H. Load Testing System and Device for Sustain Load Measurement over Time in Different Environmental Conditions. U.S. Patent 10,101,251, 16 October 2018. [Google Scholar]
- Sabry, I.; Ghafaar, M.A.; Mourad, A.-H.I.; Idrisi, A.H. Stir casted SiC-Gr/Al6061 hybrid composite tribological and mechanical properties. SN Appl. Sci. 2020, 2, 943. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.-H.I.; Greish, Y.E.; Ayad, O.G. Processing and mechanical performance of Hydroxyapatite-UHMWPE composites. In Proceedings of the IEEE 2019 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, 26 March–10 April 2019; pp. 1–5. [Google Scholar]
- Iftikhar, S.H.; Mourad, A.-H.I.; Sheikh-Ahmad, J. An overview of friction stir welding of high-density polyethylene. In Proceedings of the IEEE 2020 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, 4 February–9 April 2020; pp. 1–6. [Google Scholar]
- Idrisi, A.H.; Mourad, A.-H.I. Impact of the harsh environment on GFRE and GFRPol composite. In Proceedings of the Ocean 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, J.; GangaRao, H.; Liang, R.; Zhou, D.; Liu, W.; Fang, Y. Durability of glass fiber-reinforced polymer composites under the combined effects of moisture and sustained loads. J. Reinf. Plast. Compos. 2015, 34, 1739–1754. [Google Scholar] [CrossRef]
- Strait, L.H.; Karasek, M.L.; Amateau, M.F. Effects of seawater immersion on the impact resistance of glass fiber reinforced epoxy composites. J. Compos. Mater. 1992, 26, 2118–2133. [Google Scholar] [CrossRef]
- Mejia, E.B.; Mourad, A.-H.I.; Faqer, A.S.B.; Halwish, D.F.; Al Hefeiti, H.O.; Al Kashadi, S.M.; Cherupurakal, N.; Mozumder, M.S. Impact on HDPE mechanical properties and morphology due to processing. In Proceedings of the IEEE 2019 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, 26 March–10 April 2019; pp. 1–5. [Google Scholar]
- Mourad, A.-H.I.; Cherupurakal, N.; Hafeez, F.; Barsoum, I.; A Genena, F.; S Al Mansoori, M.; A Al Marzooqi, L. Impact Strengthening of Laminated Kevlar/Epoxy Composites by Nanoparticle Reinforcement. Polymers 2020, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Raman, R.K.S.; Al-Saadi, S.; Haque, A. Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489. [Google Scholar] [CrossRef]
- Chen, Y.; Davalos, J.F.; Ray, I.; Kim, H.-Y. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Compos. Struct. 2007, 78, 101–111. [Google Scholar] [CrossRef]
- Charles, R.J. The strength of silicate glasses and some crystalline oxides. In Proceedings of the International Conference on Atomic Mechanisms of Fracture, Swampscott, MA, USA, 12–16 April 1959; MIT Press: Cambridge, MA, USA, 1959; pp. 225–250. [Google Scholar]
- Robert, M.; Benmokrane, B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars. Constr. Build. Mater. 2013, 38, 274–284. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Fouad, H.; Elleithy, R. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade. Mater. Des. 2009, 30, 4112–4119. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Elsayed, H.F.; Barton, D.C. Semicrystalline polymers deformation and fracture behaviour under quasistatic strain rates and triaxial states of stress. Strength Fract. Complex. 2004, 2, 149–162. [Google Scholar]
- Mourad, A.-H.I.; Dehbi, A. On use of trilayer low density polyethylene greenhouse cover as substitute for monolayer cover. Plast. Rubber Compos. 2014, 43, 111–121. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Akkad, R.O.; Soliman, A.A.; Madkour, T.M. Characterisation of thermally treated and untreated polyethylene–polypropylene blends using D.S.C.; TGA and IR techniques. Plast. Rubber Compos. 2009, 38, 265–278. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Xian, G.; Li, H. Effects of surface treatment of carbon fiber: Tensile property, surface characteristics, and bonding to epoxy. Polym. Compos. 2016, 37, 2921–2932. [Google Scholar] [CrossRef]
- Zafar, A.; Bertocco, F.; Schjødt-Thomsen, J.; Rauhe, J.C. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Compos. Sci. Technol. 2012, 72, 656–666. [Google Scholar] [CrossRef]
- Kawagoe, M.; Takeshima, M.; Nomiya, M.; Qiu, J.; Morita, M.; Mizuno, W.; Kitano, H. Microspectroscopic evaluations of the interfacial degradation by absorbed water in a model composite of an aramid fibre and unsaturated polyester. Polymer 1999, 40, 1373–1380. [Google Scholar] [CrossRef]
- Babaghayou, M.I.; Mourad, A.-H.I.; Lorenzo, V.; Chabira, S.F.; Sebaa, M. Anisotropy evolution of low density polyethylene greenhouse covering films during their service life. Polym. Test. 2018, 66, 146–154. [Google Scholar] [CrossRef]
- Guo, F.; Al-Saadi, S.; Raman, R.K.S.; Zhao, X.L. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment. Corros. Sci. 2018, 141, 1–13. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.-H.I.; Mairpady, A.; Pervez, H.; Haque, M.E. Effect of TiO 2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO 2 Nanocomposites. J. Mater. Eng. Perform. 2018, 27, 2166–2181. [Google Scholar] [CrossRef]
- Babaghayou, M.I.; Mourad, A.-H.I.; Ochoa, A.; Beltrán, F.; Cherupurakal, N. Study on the thermal stability of stabilized and unstabilized low-density polyethylene films. Polym. Bull. 2020, 1–17. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part II: Variations of glass transition temperature. Polymer 1999, 40, 5513–5522. [Google Scholar] [CrossRef]
Authors | Composite | Conditioning | Duration | Tests Performed |
---|---|---|---|---|
Silva et al. [27] | E-glass/epoxy | Saltwater at 30 °C, 45 °C and 55 °C | 750–5000 hrs (Approx 7 months) | Water absorption, tensile properties |
Chakraverty et al. [29] | E-glass/epoxy | Seawater at room temperature | 2, 4, 6, 8, 10, and12 months (1 year) | Water absorption, ILSS properties, DSC, failure analysis |
Hu et al. [32] | Glass/polydicycl-opentadiene and glass/epoxy | Saltwater and deionized water at 60 °C | 1, 3, 6, and 12 months (1 year) | Water absorption, DMA, tensile strength, ILSS, |
Guermazi et al. [33] | Glass/epoxy, carbon/epoxy and glass/carbon/epoxy | Tapwater at 24 ± 3, 70 and 90 °C | 3 months | Water absorption, DMA, tensile and flexural test, abrasive wear test |
Bobba et al. [34] | E-glass and S-glass fiber–epoxy | Tap water at 90 °C | 600, 1200, and 1800 hrs (2.5 months) | Impact test |
Feng et al. [35] | Glass/epoxy | H2SO4, NaOH and NaCl at 60 and 90 °C | 7, 15, 30, and 90 days (3 months) | Water absorption, flexural properties, hardness, SEM analysis |
Merah et al. [28] | Glass fiber-reinforced epoxy (GFRE) | Seawater at outdoor temperature | 6 and 12 months | Tensile properties, failure analysis |
Mourad et al. [13] | Glass/epoxy and glass/polyurethane | Seawater at 23 °C and 65 °C | 3, 6, 9, and 12 months | Water absorption, tensile properties, DSC, failure analysis |
Mourad et al. [31] | E-glass/epoxy and E-glass/polyurethane | Seawater at 23 °C and 65 °C | Up to 7.5 years | Tensile properties, failure analysis |
EminDeniz et al. [36] | Glass/epoxy composite | Seawater at 20 °C | 3, 6, 9, and 12 months | Impact test |
Pavan et al. [25] | E-glass/epoxy laminates | Artificial seawater in sub-zero and ambient temperatures | 3600 h(5 months) | Water absorption, tensile properties, and failure analysis |
Wei et al. [37] | Basalt fiber-reinforced plastic (BFRP) and glass fiber-reinforced plastic (GFRP) | Artificial seawater at 25 °C | 10, 20, 30, 60, and 90 days | Water absorption, tensile and flexural properties, and microstructural analysis |
Antunes et al. [38] | Glass/epoxy filament wound cylinders | Seawater at 80 °C | 7–28 days | Hoop stress, failure analysis |
Ghabezi et al. [39] | Carbon/epoxy and glass/epoxy | Artificial seawater at room temperature and 60 °C | 45 days | Tensile and 3-point bending |
Parameters | Dimensions |
---|---|
Specimen length, L | 250 mm |
Specimen width, b | 15 mm |
Specimen thickness, h | 3 mm |
Gauge length, S | 150 mm |
Tab length, Ltab | 50 mm |
Tab thickness, htab | 4 mm |
Tab bevel angle | 90° |
Conditioning Duration (Months) | 23 °C | 45 °C | 65 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Tensile Strength (MPa) | Failure Strain (%) | Tensile Modulus (GPa) | Tensile Strength (MPa) | Failure Strain (%) | Tensile Modulus (GPa) | Tensile Strength (MPa) | Failure Strain (%) | Tensile Modulus (GPa) | |
0 (Control Sample) | 794 ± 46 | 2.14 ± 0.02 | 37.1 ± 2.5 | 794 ± 46 | 2.14 ± 0.02 | 37.1 ± 2.5 | 794 ± 46 | 2.14 ± 0.02 | 37.1 ± 2.5 |
6 | 791 ± 54 | 2.4 ± 0.0 | 33.33 ± 2.5 | 786 ± 40 | 2.38 ± 0.1 | 33.3 ± 1.6 | 761 ± 20 | 2.3 ± 0.20 | 33.1 ± 0.6 |
12 | 789 ± 41 | 2.1 ± 0.23 | 38.49 ± 5.4 | 754 ± 49 | 2.17 ± 1.165 | 36.9 ± 4.3 | 721 ± 44 | 2.2 ± 0.1 | 34.7 ± 3.1 |
15 | 787 ± 38 | 2.4 ± 0.20 | 34.73 ± 0.8 | 712 ± 43 | 1.97 ± 0.15 | 35.1 ± 0.5 | 630 ± 47 | 1.5 ± 0.1 | 35.3 ± 0.3 |
18 | 781 ± 65 | 2.3 ± 0.1 | 33.82 ± 1.7 | 697 ± 38 | 1.92 ± 0.014 | 32.2 ± 1.4 | 565 ± 48 | 1.5 ± 0.18 | 36.9 ± 1.1 |
24 | 778 ± 87 | 2.5 ± 0.38 | 32.16 ± 1.7 | 687 ± 35 | 2.02 ± 0.275 | 32.8 ± 1.3 | 502 ± 51 | 1.5 ± 0.17 | 33.0 ± 0.9 |
36 | 775 ± 9 | 2 ± 0.49 | 37.83 ± 3.2 | 659 ± 31 | 1.85 ± 0.26 | 37.9 ± 1.8 | 484 ± 22 | 1.3 ± 0.03 | 37.1 ± 0.4 |
60 | 770 ± 53 | 2 ± 0.25 | 37.31 ± 1.5 | 646 ± 43 | 1.75 ± 0.165 | 37.2 ± 1.6 | 424 ± 53 | 1.1 ± 0.08 | 37.8 ± 1.8 |
72 | 758 ± 22 | 1.98 ± 0.03 | 37.68 ± 2.2 | 625 ± 30 | 1.81 ± 0.05 | 39.1 ± 1.8 | 413 ± 27 | 1.1 ± 0.07 | 39.7 ± 1.4 |
84 | 750 ± 34 | 1.9 ± 0.27 | 38.81 ± 0.8 | 612 ± 42 | 1.67 ± 0.26 | 35.4 ± 1.1 | 409 ± 85 | 1.2 ± 0.25 | 33.7 ± 1.4 |
90 | 744 ± 6 | 1.85 ± 0.08 | 34.96 ± 1.3 | 602 ± 21 | 1.54 ± 0.06 | 35.8 ± 1.1 | 406 ± 27 | 1.1 ± 0.04 | 36.9 ± 0.9 |
96 | 741 ± 28 | 2.06 ± 0.15 | 38.88 ± 2.8 | 596 ± 34 | 1.55 ± 0.075 | 37.5 ± 1.8 | 401 ± 32 | 1.13 ± 0.03 | 39.2 ± 1.1 |
102 | 740 ± 65 | 2.03 ± 0.09 | 38.7 ± 1.7 | 588 ± 39 | 1.61 ± 0.16 | 38.4 ± 1.5 | 398 ± 33 | 1.09 ± 0.18 | 39.8 ± 1.7 |
108 | 739 ± 42 | 2.03 ± 0.17 | 38.15 ± 2.6 | 583 ± 41 | 1.58 ± 0.165 | 37.4 ± 1.7 | 391 ± 21 | 0.93 ± 0.07 | 36.4 ± 0.9 |
114 | 738 ± 39 | 2.05 ± 0.12 | 38.21 ± 1.2 | 579 ± 37 | 1.52 ± 0.13 | 37.4 ± 1.1 | 381 ± 38 | 0.98 ± 0.15 | 39.0 ± 1.2 |
120 | 733 ± 41 | 2.1 ± 0.16 | 37.99 ± 1.4 | 572 ± 25 | 1.5 ± 0.156 | 38.1 ± 1.4 | 373 ± 31 | 0.95 ± 0.04 | 39.5 ± 1.6 |
126 | 731 ± 45 | 2.08 ± 0.14 | 38.4 ± 1.5 | 564 ± 28 | 1.53 ± 0.16 | 38.5 ± 1.6 | 369 ± 22 | 0.9 ± 0.1 | 39.4 ± 1.4 |
132 | 729 ± 48 | 2.11 ± 0.11 | 37.9 ± 2.3 | 558 ± 31 | 1.49 ± 0.09 | 37.8 ± 1.9 | 362 ± 25 | 0.86 ± 0.08 | 38.6 ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrisi, A.H.; Mourad, A.-H.I.; Sherif, M.M. Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite. Polymers 2021, 13, 2154. https://doi.org/10.3390/polym13132154
Idrisi AH, Mourad A-HI, Sherif MM. Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite. Polymers. 2021; 13(13):2154. https://doi.org/10.3390/polym13132154
Chicago/Turabian StyleIdrisi, Amir Hussain, Abdel-Hamid I. Mourad, and Muhammad M. Sherif. 2021. "Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite" Polymers 13, no. 13: 2154. https://doi.org/10.3390/polym13132154
APA StyleIdrisi, A. H., Mourad, A.-H. I., & Sherif, M. M. (2021). Impact of Prolonged Exposure of Eleven Years to Hot Seawater on the Degradation of a Thermoset Composite. Polymers, 13(13), 2154. https://doi.org/10.3390/polym13132154