Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency
Abstract
:1. Introduction
2. Simulation Method and Device Parameters
- Poisson model states that the one-dimension (x) Laplacian of the electrostatic potential field (φ) is equal to the ratio of total volume charge density and the permittivity
- The device continuity model states that change in the electron/hole current density (Jn/Jp) over a specific time as a function of position is equal to the result of generation (G) and the recombination (R) of electron/hole, respectively.
- The semiconductor charge transport model describes that the total electron/hole current density (J) is the sum of electron/hole drift and diffusion current density
- For the optical absorption coefficient, SCAPS offers different options for the calculation of the absorption coefficient α (λ), but in this study, we use the following equation depending on the relation of photons (h is the plank constant and ν is the photon frequency) and perovskite (as a absorber layer) energy bandgap (Eg)
3. Results and Discussion
3.1. Thickness Optimization of Electron Transport Layer
3.2. Thickness Optimization of Hole Transport Layer
3.3. Optimization of Cs2TiBr6 as the Absorber Layer
3.4. Photovoltaic Response of Proposed Solar Cell
3.5. External Quantum Efficiency of Proposed Solar Cell
3.6. Thermal Stability of the Proposed Solar Cell
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, G.-H.; Kim, D.S. Development of Perovskite Solar Cells with >25% Conversion Efficiency. Joule 2021, 5, 1033–1035. [Google Scholar] [CrossRef]
- Giustino, F.; Snaith, H.J. Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1233–1240. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.-G.; Chen, M.; Zhou, Y.; Garces, H.F.; Dai, J.; Ma, L.; Padture, N.P.; Zeng, X.C. Earth-Abundant Nontoxic Titanium(IV)-Based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 EV Bandgaps for Photovoltaic Applications. ACS Energy Lett. 2018, 3, 297–304. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.-G.; Carl, A.D.; Zong, Y.; Grimm, R.L.; Gu, J.; Zeng, X.C.; Zhou, Y.; Padture, N.P. Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-Free Perovskite Solar Cells. Joule 2018, 2, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Pecunia, V.; Occhipinti, L.G.; Chakraborty, A.; Pan, Y.; Peng, Y. Lead-Free Halide Perovskite Photovoltaics: Challenges, Open Questions, and Opportunities. APL Mater. 2020, 8, 100901. [Google Scholar] [CrossRef]
- Euvrard, J.; Wang, X.; Li, T.; Yan, Y.; Mitzi, D.B. Is Cs2TiBr6 a Promising Pb-Free Perovskite for Solar Energy Applications? J. Mater. Chem. A 2020, 8, 4049–4054. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Wu, C.-G. Bulk Heterojunction Perovskite–PCBM Solar Cells with High Fill Factor. Nat. Photonics 2016, 10, 196–200. [Google Scholar] [CrossRef]
- Said, A.A.; Xie, J.; Zhang, Q. Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15, 1900854. [Google Scholar] [CrossRef]
- Asgary, S.; Moghaddam, H.M.; Bahari, A.; Mohammadpour, R. Role of BCP Layer on Nonlinear Properties of Perovskite Solar Cell. Sol. Energy 2021, 213, 383–391. [Google Scholar] [CrossRef]
- Jeon, N.J.; Lee, H.G.; Kim, Y.C.; Seo, J.; Noh, J.H.; Lee, J.; Seok, S.I. O-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. J. Am. Chem. Soc. 2014, 136, 7837–7840. [Google Scholar] [CrossRef]
- Tran, C.D.T.; Liu, Y.; Thibau, E.S.; Llanos, A.; Lu, Z.-H. Stability of Organometal Perovskites with Organic Overlayers. AIP Adv. 2015, 5, 087185. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, D.; Yu, Z.; Ma, W.; Li, H.-B.; Yang, X.; Liu, F.; Hagfeldt, A.; Sun, L. Molecular Engineering of Copper Phthalcyanines: A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1803287. [Google Scholar] [CrossRef]
- Li, Y.; Cole, M.D.; Gao, Y.; Emrick, T.; Xu, Z.; Liu, Y.; Russell, T.P. High-Performance Perovskite Solar Cells with a Non-Doped Small Molecule Hole Transporting Layer. ACS Appl. Energy Mater. 2019, 2, 1634–1641. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Qin, C.; Matsushima, T.; Leyden, M.R.; Balijipalli, U.; Klotz, D.; Adachi, C. Understanding the Degradation of Spiro-OMeTAD-Based Perovskite Solar Cells at High Temperature. Sol. RRL 2020, 4, 2000305. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, Z.; Guo, Y.; Li, Y.; Bergstrand, J.; Brett, C.J.; Cai, B.; Hajian, A.; Guo, Y.; Yang, X.; et al. Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. J. Am. Chem. Soc. 2019, 141, 19700–19707. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Rolston, N.; Brunner, P.-L.; Dauskardt, R.H. Hole-Transport Layer Molecular Weight and Doping Effects on Perovskite Solar Cell Efficiency and Mechanical Behavior. ACS Appl. Mater. Interfaces 2019, 11, 23757–23764. [Google Scholar] [CrossRef]
- Pham, H.D.; Yang, T.C.-J.; Jain, S.M.; Wilson, G.J.; Sonar, P. Development of Dopant-Free Organic Hole Transporting Materials for Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1903326. [Google Scholar] [CrossRef]
- Verschraegen, J.; Burgelman, M. Numerical Modeling of Intra-Band Tunneling for Heterojunction Solar Cells in Scaps. Thin Solid Films 2007, 515, 6276–6279. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Khelifi, S.; Abass, A. Advanced Electrical Simulation of Thin Film Solar Cells. Thin Solid Films 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Simya, O.K.; Mahaboobbatcha, A.; Balachander, K. A Comparative Study on the Performance of Kesterite Based Thin Film Solar Cells Using SCAPS Simulation Program. Superlattices Microstruct. 2015, 82, 248–261. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency. IEEE Access 2021, 9, 54254–54263. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 2017, 4, 1700204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-C.; Tseng, Z.-L.; Huang, J.-K. A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI3)1−x(MAPbBr3)x. Nanomaterials 2016, 6, 183. [Google Scholar] [CrossRef] [Green Version]
- Madan, J.; Shivani; Pandey, R.; Sharma, R. Device Simulation of 17.3% Efficient Lead-Free All-Perovskite Tandem Solar Cell. Sol. Energy 2020, 197, 212–221. [Google Scholar] [CrossRef]
- Jayan, K.D.; Sebastian, V. Comprehensive Device Modelling and Performance Analysis of MASnI3 Based Perovskite Solar Cells with Diverse ETM, HTM and Back Metal Contacts. Sol. Energy 2021, 217, 40–48. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorashi, S.M.B. Investigation of the Influence of Different Hole-Transporting Materials on the Performance of Perovskite Solar Cells. Optik 2017, 130, 650–658. [Google Scholar] [CrossRef]
- Franckevičius, M.; Mishra, A.; Kreuzer, F.; Luo, J.; Zakeeruddin, S.M.; Grätzel, M. A Dopant-Free Spirobi[Cyclopenta[2,1-b:3,4-B′]Dithiophene] Based Hole-Transport Material for Efficient Perovskite Solar Cells. Mater. Horiz. 2015, 2, 613–618. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Zhang, P.; Liu, D.; Ji, L.; Chen, H.; Chen, Z.D.; Wu, J.; Li, S. Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 2018, 5, 263–268. [Google Scholar] [CrossRef]
- Karimov, K.S.; Ahmed, M.M.; Moiz, S.A.; Babadzhanov, P.; Marupov, R.; Turaeva, M.A. Electrical Properties of Organic Semiconductor Orange Nitrogen Dye Thin Films Deposited from Solution at High Gravity. Eurasian Chem. Technol. J. 2003, 5. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Karimov, K.S. Improved Organic Solar Cell by Incorporating Silver Nanoparticles Embedded Polyaniline as Buffer Layer. Solid State Electron. 2020, 163, 107658. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. Energies 2020, 13, 3797. [Google Scholar] [CrossRef]
- Moiz, S.A.; Khan, I.A.; Younis, W.A.; Masud, M.I.; Ismail, Y.; Khawaja, Y.M. Solvent Induced Charge Transport Mechanism for Conducting Polymer at Higher Temperature. Mater. Res. Express 2020, 7, 095304. [Google Scholar] [CrossRef]
- Moiz, S.A.; Nahhas, A.M.; Um, H.-D.; Jee, S.-W.; Cho, H.K.; Kim, S.-W.; Lee, J.-H. A Stamped PEDOT:PSS–Silicon Nanowire Hybrid Solar Cell. Nanotechnology 2012, 23, 145401. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Elumalai, N.K.; Mahmud, M.A.; Upama, M.B.; Wright, M.; Chan, K.H.; Xu, C.; Uddin, A. Effect of PCBM Film Thickness on the Performance of Inverted Perovskite Solar Cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1670–1672. [Google Scholar] [CrossRef]
- Kam, Z.; Yang, Q.; Wang, X.; Wu, B.; Zhu, F.; Zhang, J.; Wu, J. Enhanced Absorbance and Electron Collection in Inverted Organic Solar Cells: Optical Admittance and Transient Photocurrent Analyses. Org. Electron. 2014, 15, 1306–1311. [Google Scholar] [CrossRef]
- Chu, T.-Y.; Song, O.-K. Thickness Dependence of the Trap States in Organic Thin Film of N,N′-Bis(Naphthalen-1-Yl)-N,N′-Bis(Phenyl) Benzidine. Appl. Phys. Lett. 2007, 91, 073508. [Google Scholar] [CrossRef]
- Um, H.-D.; Moiz, S.A.; Park, K.-T.; Jung, J.-Y.; Jee, S.-W.; Ahn, C.H.; Kim, D.C.; Cho, H.K.; Kim, D.-W.; Lee, J.-H. Highly Selective Spectral Response with Enhanced Responsivity of N-ZnO/p-Si Radial Heterojunction Nanowire Photodiodes. Appl. Phys. Lett. 2011, 98, 033102. [Google Scholar] [CrossRef]
- Miyano, K.; Tripathi, N.; Yanagida, M.; Shirai, Y. Lead Halide Perovskite Photovoltaic as a Model p–i–n Diode. Acc. Chem. Res. 2016, 49, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Moiz, S.A.; Ahmed, M.M.; Karimov, K.S. Estimation of Electrical Parameters of OD Organic Semiconductor Diode from Measured I-V Characteristics. ETRI J. 2005, 27, 319–325. [Google Scholar] [CrossRef]
- Bohlin, K.E. Generalized Norde Plot Including Determination of the Ideality Factor. J. Appl. Phys. 1986, 60, 1223–1224. [Google Scholar] [CrossRef]
- Sha, Y.; Bi, E.; Zhang, Y.; Ru, P.; Kong, W.; Zhang, P.; Yang, X.; Chen, H.; Han, L. A Scalable Integrated Dopant-Free Heterostructure to Stabilize Perovskite Solar Cell Modules. Adv. Energy Mater. 2021, 11, 2003301. [Google Scholar] [CrossRef]
- McIntosh, K.R.; Lau, G.; Cotsell, J.N.; Hanton, K.; Bätzner, D.L.; Bettiol, F.; Richards, B.S. Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting Layer. Prog. Photovolt. Res. Appl. 2009, 17, 191–197. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Photovoltaic Parameters | Symbol | Unit | BCP | PCBM | Cs2TiBr6 | NPB |
---|---|---|---|---|---|---|
Thickness | Th | nm | 10 | 300 | 150 | 100 |
Energy Band Gap | Eg | eV | 3.5 | 1.9 | 1.6 | 3 |
Electron Affinity | χ | eV | 3.7 | 3.9 | 4.47 | 2.4 |
Dielectric Permittivity (Relative) | ε | - | 10 | 4 | 10 | 3 |
Effective Density of States at Valence Band | NV | cm−3 | 2.2 × 1018 | 2.2 × 1021 | 1 × 1019 | 1 × 1021 |
Effective Density of States at Conduction Band | NC | cm−3 | 1.8 × 1018 | 1.8 × 1020 | 1 × 1019 | 1 × 1021 |
Hole Thermal Velocity | Ve | cm/s | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron Thermal Velocity | Vh | cm/s | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron Mobility | μe | cm2/V·s | 2 × 10−2 | 1 × 10−1 | 44 | 6.1 × 10−5 |
Hole Mobility | μh | cm2/V·s | 2 × 10−3 | 1.5 × 10−2 | 2.5 | 6.1 × 10−4 |
Uniform Shallow Donor Doping | Nd | cm−3 | 1 × 1021 | 1 × 1020 | 1 × 1013 | 1 × 1013 |
Uniform Shallow Acceptor Doping | Na | cm−3 | 1 × 1010 | 1 × 1013 | 0 | 1 × 1016 |
Defect Density | Nt | cm−3 | 1 × 1014 | 1 × 1014 | 1 × 1017 | 1 × 1015 |
Parameters | Unit | Cs2TiBr6/NPB |
---|---|---|
Defect Type | - | Neutral |
Capture cross section for electron | cm−3 | 1 × 1014 |
Capture cross section for electron | cm−3 | 1 × 1014 |
Enerfetic Distribution | - | Single |
Energy level with respect to Ev | eV | 6.0 × 10−1 |
Characteristic Energy | eV | ~0.1 |
Defect Density | cm−3 | 4.5 × 1018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiz, S.A.; Alahmadi, A.N.M. Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency. Polymers 2021, 13, 2110. https://doi.org/10.3390/polym13132110
Moiz SA, Alahmadi ANM. Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency. Polymers. 2021; 13(13):2110. https://doi.org/10.3390/polym13132110
Chicago/Turabian StyleMoiz, Syed Abdul, and Ahmed N. M. Alahmadi. 2021. "Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency" Polymers 13, no. 13: 2110. https://doi.org/10.3390/polym13132110
APA StyleMoiz, S. A., & Alahmadi, A. N. M. (2021). Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency. Polymers, 13(13), 2110. https://doi.org/10.3390/polym13132110