The Effect of Titanium Tetra-Butoxide Catalyst on the Olefin Polymerization
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of PVC/BuMgCl/Ti(OBu)4∙TiCl4 Catalyst
2.3. Ethylene Homopolymerization
2.4. Ethylene/1-Octene and Ethylene/1-Hexene Copolymerization
2.5. Characterization
3. Results and Discussion
3.1. Ethylene Homopolymerization and Characterization of Homopolymers
3.2. Ethylene/1-Octene and Ethylene/1-Hexene Copolymerizations and Characterization of the Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amore, M.; Thushara, K.; Piovano, A.; Causa, M.; Bordiga, S.; Groppo, E. Surface investigation and morphological analysis of structurally disordered MgCl2 and MgCl2/TiCl4 Ziegler–Natta catalysts. ACS Catal. 2016, 6, 5786–5796. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Fu, T.; Zhao, N.; Liu, B. Novel Cr/Ti bimetallic polyethylene catalysts synthesized through introduction of chromium species into the (SiO2/MgR2/MgCl2)· TiClx Ziegler-Natta catalyst. J. Organomet. Chem. 2019, 888, 1–15. [Google Scholar] [CrossRef]
- Ribour, D.; Spitz, R.; Monteil, V. Modifications of the active sites distribution in the Ziegler Natta polymerization of propylene using Lewis acids. J. Polym. Sci. Part. A Polym. Chem. 2010, 48, 2631–2635. [Google Scholar] [CrossRef]
- D’Amore, M.; Credendino, R.; Budzelaar, P.H.; Causá, M.; Busico, V. A periodic hybrid DFT approach (including dispersion) to MgCl2-supported Ziegler–Natta catalysts–1: TiCl4 adsorption on MgCl2 crystal surfaces. J. Catal. 2012, 286, 103–110. [Google Scholar] [CrossRef]
- Pongchan, T.; Praserthdam, P.; Jongsomjit, B. Gas-phase polymerization of ethylene over Ti-based Ziegler–Natta catalysts prepared from different magnesium sources. Mater. Today Chem. 2020, 18, 100366. [Google Scholar] [CrossRef]
- Pongchan, T.; Praserthdam, P.; Jongsomjit, B. Temperature effect on propylene polymerization behavior over Ziegler-Natta catalyst with different cocatalyst systems. Mater. Res. Express 2020, 7, 025309. [Google Scholar] [CrossRef]
- Philippaerts, A.; Ensinck, R.; Baulu, N.; Cordier, A.; Woike, K.; Berthoud, R.; Cremer, G.D.; Severn, J.R. Influence of the particle size of the MgCl2 support on the performance of Ziegler catalysts in the polymerization of ethylene to ultra-high molecular weight polyethylene and the resulting polymer properties. J. Polym. Sci. Part. A Polym. Chem. 2017, 55, 2679–2690. [Google Scholar] [CrossRef]
- Mandal, B.M. Fundamentals of Polymerization; World Scientific: Hackensack, NJ, USA, 2013. [Google Scholar]
- Wang, J.; Cheng, R.; He, X.; Liu, Z.; Zhao, N.; Liu, B. Introduction of chromium species into the (SiO2/MgO/MgCl2) TiClx Zieglere-Natta catalyst for better catalytic performance. J. Organomet. Chem. 2015, 798, 299–310. [Google Scholar] [CrossRef]
- Ochędzan-Siodłak, W.; Nowakowska, M. Titanium catalyst (TiCl4) supported on MgCl2 (THF)(AlEt2Cl)0.34 for ethylene polymerization. Polimery 2007, 52, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Cheng, R.; He, X.; Liu, Z.; Liu, B.; Zhan, R.; Gao, Y.; Zou, E.; Wang, S. Novel SiO2-Supported Silyl-Chromate (Cr)/Imido-Vanadium (V) Bimetallic Catalysts Producing Polyethylene and Ethylene/1-Hexene Copolymers with Bimodal Molecular-Weight Distribution. Macromol. Chem. Phys. 2014, 215, 1434–1445. [Google Scholar] [CrossRef]
- Fu, T.; Liu, Z.; Cheng, R.; He, X.; Tian, Z.; Liu, B. Ethylene Polymerization over MgCl2/SiO2 Bi-Supported Ziegler–Natta Hybrid Titanium/Vanadium Catalysts. Macromol. Chem. Phys. 2017, 218, 1700027. [Google Scholar] [CrossRef]
- Kashiwa, N. The discovery and progress of MgCl2-supported TiCl4 catalysts. J. Polym. Sci. Part. A Polym. Chem. 2004, 42, 1–8. [Google Scholar] [CrossRef]
- Keii, T.; Terano, M.; Kimura, K.; Ishii, K. A kinetic argument for a quasi-living polymerization of propene with a MgCl2-supported catalyst. Makromol. Chem. Rapid Commun. 1987, 8, 583–587. [Google Scholar] [CrossRef]
- Zheng, W.; He, A.; Liu, C.; Shao, H.; Wang, R. The influences of alkylaluminium as cocatalyst on butene-1 polymerization with MgCl2-supported TiCl4 Ziegler-Natta catalysts. Polymer 2020, 210, 122998. [Google Scholar] [CrossRef]
- Zheng, W.-P.; Ma, Y.-P.; Du, D.-L.; He, A.-H.; Shao, H.-F.; Liu, C.-G. Polymerization Kinetics of Propylene with the MgCl2-Supported Ziegler-Natta Catalysts—Active Centers with Different Tacticity and Fragmentation of the Catalyst. Chin. J. Polym. Sci. 2020, 1, 11. [Google Scholar] [CrossRef]
- Matsuoka, H.; Liu, B.; Nakatani, H.; Terano, M. Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromol. Rapid Commun. 2001, 22, 326–328. [Google Scholar] [CrossRef]
- Chadwick, J.C. Polyolefins-Catalyst and Process Innovations and their Impact on Polymer Properties. Macromol. React. Eng. 2009, 3, 428–432. [Google Scholar] [CrossRef]
- Hu, J.; Han, B.; Shen, X.-R.; Fu, Z.-S.; Fan, Z.-Q. Probing the roles of diethylaluminum chloride in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts. Chin. J. Polym. Sci. 2013, 31, 583–590. [Google Scholar] [CrossRef]
- Jericó, S.; Schuchardt, U.; Joekes, I.; Kaminsky, W.; Noll, A. Chlorinated organic polymers as supports for Ziegler-Natta catalysts. J. Mol. Catal. A Chem. 1995, 99, 167–173. [Google Scholar] [CrossRef]
- Whitehurst, D. Catalysis by heterogenized transition-metal complexes. Chem. Inform. 1980, 44-49, 44–49. [Google Scholar]
- Pino, P.; Mülhaupt, R. Stereospecific polymerization of propylene: An outlook 25 years after its discovery. Angew. Chem. Int. Ed. Engl. 1980, 19, 857–875. [Google Scholar] [CrossRef]
- Tuskaev, V.A.; Gagieva, S.C.; Kurmaev, D.A.; Melnikova, E.K.; Zubkevich, S.V.; Buzin, M.I.; Nikiforova, G.G.; Vasil’ev, V.G.; Saracheno, D.; Bogdanov, V.S. Olefin polymerization behavior of titanium (IV) alkoxo complexes with fluorinated diolate ligands: The impact of the chelate ring size and the nature of organoaluminum compounds. Appl. Organomet. Chem. 2020, 34, 5933. [Google Scholar] [CrossRef]
- Seger, M.; Maciel, G. Quantitative 13C NMR analysis of sequence distributions in poly (ethylene-co-1-hexene). Anal. Chem. 2004, 76, 5734–5747. [Google Scholar] [CrossRef] [PubMed]
- Galli, P.; Vecellio, G. Technology: Driving force behind innovation and growth of polyolefins. Prog. Polym. Sci. 2016, 26, 1287–1336. [Google Scholar] [CrossRef]
- Hongrui, Y.; Letian, Z.; Dandan, Z.; Zhisheng, F.; Zhiqiang, F. Effects of alkylaluminum as cocatalyst on the active center distribution of 1-hexene polymerization with MgCl2-supported Ziegler Natta catalysts. Catal. Commun. 2015, 62, 104–106. [Google Scholar]
- McKenna, T.F.; Di Martino, A.; Weickert, G.; Soares, J.B. Particle growth during the polymerisation of olefins on supported catalysts, 1–nascent polymer structures. Macromol. React. Eng. 2010, 4, 40–64. [Google Scholar] [CrossRef]
- Nooijen, G. On the importance of diffusion of cocatalyst molecules through heterogeneous Ziegler/Natta catalysts. Eur. Polym. J. 1994, 30, 11–15. [Google Scholar] [CrossRef]
- Graff, R.; Kortleve, G.; Vonk, C.G. On the size of the primary particles in ziegler catalysts. J. Polym. Sci. Part. B Polym. Lett. 1970, 8, 735–739. [Google Scholar] [CrossRef]
- Tregubov, A.A.; Zakharov, V.A.; Mikenas, T.B. Supported titanium-magnesium catalysts for ethylene polymerization: A comparative study of catalysts containing isolated and clustered titanium ions in different oxidation states. J. Polym. Sci. Part. A Polym. Chem. 2010, 47, 6362–6372. [Google Scholar] [CrossRef]
- Smith, P.; Chanzy, H.; Rotzinger, B. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength fibres. Polym. Commun. 1985, 26, 258–260. [Google Scholar]
- Andoni, A.; Chadwick, C.; Niemantsverdriet, J.; Thüne, A. Preparation method for well-defined crystallites of MgCl2-supported Ziegler-Natta catalysts and their observation by AFM and SEM. Macromol. Rapid Commun. 2007, 28, 1466–1471. [Google Scholar] [CrossRef]
- Muñoz-Escalona, A.; García, H.; Albornoz, A. Homo and copolymerization of ethylene with highly active catalysts based on TiCl4 and grignard compounds. J. Appl. Polym. Sci. 2010, 34, 977–988. [Google Scholar] [CrossRef]
- Białek, M.; Czaja, K.; Pietruszk, A. Ethylene/1-olefin copolymerization behaviour of vanadium and titanium complexes bearing salen-type ligand. Polym. Bull. 2013, 70, 1499–1517. [Google Scholar] [CrossRef] [Green Version]
- Geçim, G.; Erkoç, E. Gas phase polymerization of ethylene towards UHMWPE. Turk. J. Chem. 2020, 44, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, B.; Fu, Z.; Fan, Z. Ethylene/1-hexene copolymerization with supported Ziegler–Natta catalysts prepared by immobilizing TiCl3 (OAr) onto MgCl2. J. Appl. Polym. Sci. 2015, 132, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Ren, H.; He, X.; Li, B.; Zhao, N.; Liu, B. Ethylene polymerization over novel organic magnesium based V/Ti bimetallic Ziegler-Natta Catalysts. J. Organomet. Chem. 2020, 908, 121066. [Google Scholar] [CrossRef]
[Al]/[Ti] Ratio | Catalyst Activity (g PE/g Cat. h) |
---|---|
309 | 700 |
618 | 800 |
773 | 1100 |
927 | 1050 |
1236 | 550 |
[Al]/[Ti] Ratio (mol/mol) | Tmax (°C) |
---|---|
309 | 536.81 |
618 | 540.86 |
773 | 553.71 |
927 | 543.29 |
1236 | 544.95 |
[Al]/[Ti] ratio | Tm (°C) | ∆Hf (J/g) |
---|---|---|
309 | 137.83 | 172.9197 |
618 | 138.4 | 262.5728 |
773 | 139.32 | 316.2398 |
927 | 137.72 | 179.0029 |
1236 | 137.25 | 203.4728 |
Sample | Amount of Comonomer (mmol) | Activity (g PE/mmol Cat. h) | Tma (°C) | ∆Hf a (J/g) | Mw b (×105 g/mol) | PDI b | Comonomer Incorporation [mol%] c |
---|---|---|---|---|---|---|---|
1-octene | 32 | 1750 | 135 | 164.1 | 1.97 | 5.8 | 3.26 |
48 | 2200 | 135 | 190.9 | - | - | - | |
64 | 2300 | 133 | 144.9 | 1.77 | 4.9 | 4.45 | |
96 | 2250 | 133 | 150.5 | - | - | - | |
127 | 2050 | 132 | 157.9 | 1.86 | 5.2 | 4.06 | |
1-hexene | 40 | 1500 | 134 | 151.3 | 2.47 | 7.3 | 1.34 |
60 | 2000 | 133 | 144.2 | - | - | - | |
68 | 1900 | 132 | 143.2 | 3.26 | 4.9 | 4.87 | |
80 | 1650 | 138 | 161.3 | - | - | - | |
160 | 1450 | 136 | 147.5 | 2.31 | 6.8 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsuhybani, M.S.; Alosime, E.M. The Effect of Titanium Tetra-Butoxide Catalyst on the Olefin Polymerization. Polymers 2021, 13, 2109. https://doi.org/10.3390/polym13132109
Alsuhybani MS, Alosime EM. The Effect of Titanium Tetra-Butoxide Catalyst on the Olefin Polymerization. Polymers. 2021; 13(13):2109. https://doi.org/10.3390/polym13132109
Chicago/Turabian StyleAlsuhybani, Mohammed S., and Eid M. Alosime. 2021. "The Effect of Titanium Tetra-Butoxide Catalyst on the Olefin Polymerization" Polymers 13, no. 13: 2109. https://doi.org/10.3390/polym13132109
APA StyleAlsuhybani, M. S., & Alosime, E. M. (2021). The Effect of Titanium Tetra-Butoxide Catalyst on the Olefin Polymerization. Polymers, 13(13), 2109. https://doi.org/10.3390/polym13132109