What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?
Abstract
:1. Introduction
2. PHAs Characterization and Biosynthesis
3. PHAs Biosynthesis Using By-Products of the Dairy Industry
4. Biodiesel Derived Glycerol as a Feedstock for PHA Production
5. Molasses as a Carbon Source for PHA Production
6. Spent Oils as Substrate for PHA Biosynthesis
7. Other Agro-Food Industrial Wastes as Feedstock for PHA Production
8. PHA Production by Genetically Modified Bacteria Using Agro-Industrial Wastes
9. Challenges and Future Prospects in PHA Production Using Waste Streams
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics–the Facts 2017. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://www.plasticseurope.org/application/files/1715/2111/1527/Plastics_the_facts_2017_FINAL_for_website.pdf (accessed on 11 December 2018).
- Zhao, S.; Danley, M.; Ward, J.E.; Li, D.; Mincer, T.J. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal. Methods 2017, 9, 1470–1478. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Norton, M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chem. 2021, 22, 6310–6322. [Google Scholar] [CrossRef]
- Reddy, C.S.K.; Ghai, R.; Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Anderson, A.J.; Dawes, E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990, 54, 450–472. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Utilization of food waste streams for the production of biopolymers. Heliyon 2020, 6, e04891. [Google Scholar] [CrossRef] [PubMed]
- Amaro, T.M.; Rosa, D.; Comi, G.; Iacumin, L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front. Microbiol. 2019, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Bio-on Industry. Available online: http://www.bio-on.it/ (accessed on 23 April 2020).
- Nafigate Corporation a. s. Available online: https://www.nafigate.com/en/biotechnology-hydal (accessed on 23 April 2020).
- Full Cycle Industry. Available online: http://fullcyclebioplastics.com/;https://fullcyclebioplastics.com/ (accessed on 23 April 2020).
- Biocycle Industry. Available online: http://www.biocycle.com.br (accessed on 23 April 2020).
- Danimer Scientific, a Biotechnology Company. Available online: https://danimerscientific.com/about-us/ (accessed on 23 April 2020).
- Tianjin GreenBio Materials Co., Ltd. (GreenBio) Company. Available online: http://www.tjgreenbio.com/ (accessed on 23 April 2020).
- Tian An Biopolymer Company. Available online: http://www.tianan-enmat.com/ (accessed on 23 April 2020).
- Sarkar, O.; Katakojwalaab, R.; Mohan, S.V. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Voros, V.; Drioli, E.; Fonte, C.; Szekely, G. Process Intensification via Continuous and Simultaneous Isolation of Antioxidants: An Upcycling Approach for Olive Leaf Waste. ACS Sustain. Chem. Eng. 2019, 7, 18444–18452. [Google Scholar] [CrossRef]
- Ciesielski, S.; Pokoj, T.; Klimiuk, E. Cultivation-dependent and independent characterization of microbial community producing polyhydroxyalkanoates from raw-glycerol. J. Microbiol. Biotechnol. 2010, 20, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Rathour, R.; Singh, R.; Sun, Y.; Pandey, A.; Gnansounou, E.; Lin, K.Y.A.; Tsang, D.C.W.; Thakur, I.S. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. J. Clean. Prod. 2020, 263, 121500. [Google Scholar] [CrossRef]
- Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.Y. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers 2014, 6, 706–754. [Google Scholar] [CrossRef] [Green Version]
- Boopathy, R. Factor limiting bioremediation technologies. Bioresour. Technol. 2000, 74, 63–67. [Google Scholar] [CrossRef]
- Chen, G.Q. Biofuncionalization of polymers and their application. Adv. Biochem. Eng. Biotechnol. 2011, 125, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Barbosa, J.L.; Perin, G.B.; Felisberti, M.I. Plasticization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with an Oligomeric Polyester: Miscibility and Effect of the Microstructure and Plasticizer Distribution on Thermal and Mechanical Properties. ACS Omega 2021, 6, 3278–3290. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, P.; Seggiani, M.; Mallegni, N.; Gigante, V.; Lazzeri, A. Processability and Degradability of PHA-Based Composites in Terrestrial Environments. Int. J. Mol. Sci. 2019, 20, 284. [Google Scholar] [CrossRef] [Green Version]
- Koller, M.; Salerno, A.; Braunegg, G. Polyhydroxyalkanoates: Basics, production and applications of microbial biopolyesters. In Bio-Based Plastics: Materials and Applications; Stephan, K., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 137–170. [Google Scholar]
- Shamala, T.R.; Vijayendra, S.V.N.; Joshi, G.J. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR67. Braz. J. Microbiol. 2012, 43, 1094–1102. [Google Scholar] [CrossRef] [Green Version]
- Vijay, R.; Tarika, K. Banana peel as an inexpensive carbon source for microbial polyhydroxyalkanoate (PHA) production. Int. Res. J. Environ. Sci. 2018, 1, 28–36. [Google Scholar]
- Takahashi, R.Y.U.; Castilho, N.A.S.; da Silva, M.A.C.; Miotto, M.C.; de Souza Lima, A.O. Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates. Bioengineering 2017, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Lemechko, P.; Fellic, M.L.; Bruzaud, S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int. J. Biol. Macromol. 2019, 128, 429–434. [Google Scholar] [CrossRef]
- Salgaonkar, B.B.; Mani, K.; Bragança, J.M. Sustainable Bioconversion of Cassava Waste to Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3. J. Polym. Environ. 2019, 27, 299–308. [Google Scholar] [CrossRef]
- Van Thuoc, D.; My, D.N.; Loan, T.T.; Sudesh, K. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate (PHA) production by Salinivibrio sp. M318. Int. J. Biol. Macromol. 2020, 141, 885–892. [Google Scholar] [CrossRef]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Manikandan, N.A.; Pakshirajan, K.; Pugazhenthi, G. Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int. J. Biol. Macromol. 2020, 154, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.F.; Rizk, S.; Martin, D.P. Poly-4-hydroxybutyrate (P4HB): A new generation of resorbable medical devices for tissue repair and regeneration. Biomed. Tech. 2013, 58, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Nigmatullin, R.; Thomas, P.; Lukasiewicz, B.; Puthussery, H.; Roy, I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J. Chem. Technol. Biotechnol. 2015, 90, 1209–1221. [Google Scholar] [CrossRef]
- Yagmurlu, M.F.; Korkusuz, F.; Gürsel, I.; Korkusuz, P.; Ors, U.; Hasirci, V. Sulbactam cefoperazone polyhydroxybutyate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J. Biomed. Mater. Res. 1999, 46, 494–503. [Google Scholar] [CrossRef]
- Huang, W.; Shi, X.; Ren, L.; Du, C.; Wang, Y. PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 2010, 31, 4278–4285. [Google Scholar] [CrossRef]
- Zhao, K.; Deng, Y.; Chen, J.C.; Chen, G.Q. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 2003, 24, 1041–1045. [Google Scholar] [CrossRef]
- Lizarraga-Valderrama, L.R.; Nigmatullin, R.; Taylor, C.; Haycock, J.W.; Claeyssens, F.; Knowles, J.C.; Roy, I. Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration. Eng. Life Sci. 2015, 15, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Rehm, B.H. Polyester synthases: Natural catalysts for plastics. Biochem. J. 2003, 37, 15–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.H.; Azizan, M.N.M.; Sudesh, K. Effect of culture conditions of poly(3-hydroxybuyrate-co-4-hydroxybutyrate) synthesized by Commamonas acidovorans. Polym. Degrad. Stab. 2004, 84, 129–134. [Google Scholar] [CrossRef]
- Ciesielski, S.; Możejko, J.; Przybyłek, G. The influence of nitrogen limitation on mcl-PHA synthesis by two newly isolated strains of Pseudomonas sp. J. Ind. Microbiol. Biotechnol. 2010, 37, 511–520. [Google Scholar] [CrossRef]
- Freches, A.; Lemos, P.C. Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length. New Biotechnol. 2017, 39, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Surendran, A.; Lakshmanan, M.; Chee, J.Y.; Sulaiman, A.M.; Van Thuoc, D.; Sudesh, K. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils? Front. Bioeng. Biotechnol. 2020, 8, 169. [Google Scholar] [CrossRef]
- Das, S.; Majumder, A.; Shukla, V.; Suhazsini, P.; Radha, P. Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J. Polym. Environ. 2018, 26, 4176–4187. [Google Scholar] [CrossRef]
- Obruca, S.; Marova, I.; Melusova, S.; Mravcova, L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann. Microbiol. 2011, 61, 947–953. [Google Scholar] [CrossRef]
- Kucera, D.; Pernicová, I.; Kovalcik, A.; Koller, M.; Mullerova, L.; Sedlacek, P.; Mravec, F.; Nebesarova, J.; Kalina, M.; Marova, I.; et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018, 256, 552–556. [Google Scholar] [CrossRef]
- Bustamante, D.; Segarra, S.; Tortajada, M.; Ramon, D.; del Cerro, C.; Prieto, M.A.; Iglesias, J.R.; Rojas, A. In silico prospection of microorganisms to produce polyhydroxyalkanoate from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain. Microbial. Biotechnol. 2019, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pantazaki, A.A.; Papaneophytou, C.P.; Pritsa, A.G.; Liakopoulou-Kyriakide, M.; Kyriakidis, D.A. Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process. Biochem. 2009, 44, 847–853. [Google Scholar] [CrossRef]
- de Andrade, C.S.; Nascimento, V.M.; Cortez Vega, W.R.; Fakhouri, F.M.; Silva, L.F.; Gomez, J.B.G.; Fonseca, G. Exploiting Cheese Whey as Co-substrate for Polyhydroxyalkanoates Synthesis from Burkholderia sacchari and as Raw Material for the Development of Biofilms. Waste Biomass Valorization 2017, 10, 1609–1616. [Google Scholar] [CrossRef]
- Suhazsini, P.; Keshav, R.; Narayanan, S.; Chaudhuri, A.; Radha, P. A Study on the Synthesis of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Bacillus megaterium Utilizing Cheese Whey Permeate. J. Polym. Environ. 2020, 28, 1390–1405. [Google Scholar] [CrossRef]
- Pais, J.; Serafin, L.S.; Freitas, F.; Reis, M.A.M. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol. 2016, 1, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mallick, N. Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. Ind. Microbiol. Biotechnol. 2009, 36, 347–354. [Google Scholar] [CrossRef]
- de Paula, F.C.; Kakazu, S.; de Paula, C.B.C.; Gomez, J.G.C.; Contiero, J. Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. J. King. Saud. Univ. 2016, 19, 166–173. [Google Scholar] [CrossRef]
- de Paula, F.C.; Kakazu, S.; de Paula, C.B.C.; de Almeida, A.F.; Gomez, J.G.C.; Contiero, J. Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. Biocatal. Agric. Biotechnol. 2019, 20, 101–268. [Google Scholar] [CrossRef]
- Gahlawat, G.; Soni, S.K. Study on Sustainable Recovery and Extraction of Polyhydroxyalkanoates (PHAs) Produced by Cupriavidus necator Using Waste Glycerol for Medical Applications. Chem. Biochem. Eng. Q. 2019, 33, 99–110. [Google Scholar] [CrossRef]
- Ribeiro, P.L.L.; da Silva, A.C.M.S.; Filho, J.A.M.; Druzian, J.I. Impact of different by-products from the biodiesel industry and bacterial strains on the production, composition, and properties of novel polyhydroxyalkanoates containing achiral building blocks. Ind. Crops Prod. 2015, 69, 212–223. [Google Scholar] [CrossRef]
- Poblete-Castro, I.; Binger, D.; Oehlert, R.; Rohde, M. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol. 2014, 14, 962. [Google Scholar] [CrossRef] [Green Version]
- Kourmentza, C.; Araujo, D.; Sevrin, C.; Roma-Rodriques, C.; Ferreira, J.L.; Freitas, F.; Dionisio, M.; Baptista, P.V.; Fernandes, A.R.; Grandfils, C.; et al. Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product. Bioresour. Technol. 2019, 281, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.R.; Araújo, D.; Marques, A.C.; Neves, L.A.; Grandfils, C.; Sevrin, C.; Alves, V.D.; Fortunato, E.; Reis, M.A.M.; Freitas, F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 2019, 122, 1144–1151. [Google Scholar] [CrossRef]
- Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S.C. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb. Cell. Fact. 2016, 55, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desouky, S.E.S.; Abdel-Rahman, M.A.; Azab, M.S.; Esmael, M.E. Batch and fed-batch production of polyhydroxyalkanoates from sugarcane molasses by Bacillus flexus Azu-A2. JIPBS 2017, 4, 55–66. [Google Scholar]
- Kulpreecha, S.; Boonruangthavorn, A.; Meksiriporn, B.; Thongchul, N. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 2009, 107, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Geethu, M.; Vrundha, R.; Raja, S.; Raghu, H.; Chandrashekar, H.R.; Divyashree, M.S. Improvement of the Production and Characterisation of Polyhydroxyalkanoate by Bacillus endophyticus Using Inexpensive Carbon Feedstock. J. Polym. Environ. 2019, 27, 917–928. [Google Scholar] [CrossRef]
- Dalsasso, R.R.; Pavan, F.A.; Bordignon, S.E.; de Aragão, G.M.F.; Poletto, P. Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process. Biochem. 2019, 85, 12–18. [Google Scholar] [CrossRef]
- Mohammed, S.; Panda, A.A.; Ray, L. An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Int. J. Biol. Macromol. 2019, 34, 1085–1096. [Google Scholar] [CrossRef]
- Rathika, R.; Janaki, V.; Shanthi, K.; Kamala-Kannan, S. Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. Int. J. Environ. Sci. Tech. 2019, 16, 5725–5734. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bakhiet, E.K.; Hussein, H.R.; Ali, S.G. Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. Int. J. Sci. Environ. Technol. 2018, 16, 3497–3512. [Google Scholar] [CrossRef]
- Hassan, E.A.; Abd-Alla, M.H.; Zohri, A.N.A.; Ragaey, M.M.; Ali, S.M. Production of butanol and polyhydroxyalkanoate from industrial waste by Clostridium beijerinckii ASU10. Int. J. Energy Res. 2019, 43, 3640–3652. [Google Scholar] [CrossRef]
- Kourmentza, C.; Costa, J.; Azevedo, Z.; Servin, C.; Grandfils, C.; De Freitas, V.; Reis, M.A.M. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour. Technol. 2018, 247, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Thuoc, D.V.; Anh, V.T.M. Bioconversion of Crude Fish Oil Into Poly-3-hydroxybutyrate by Ralstonia sp. M91. Appl. Biochem. Microbiol. 2021, 57, 219–225. [Google Scholar] [CrossRef]
- Pernicova, I.; Kucera, D.; Nebesarova, J.; Kalina, M.; Novackova, I.; Koller, M.; Obruca, S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strain. Bioresour. Technol. 2019, 292, 122028. [Google Scholar] [CrossRef] [PubMed]
- Sangkharak, K.; Prasertsan, P. The production of polyhydroxyalkanoate by Bacillus licheniformis using sequential mutagenesis and optimization. Biotechnol. Bioprocess Eng. 2013, 18, 272–279. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, B.S. Paracoccus sp. Strain LL1 as a Single Cell Factory for the Conversion of Waste Cooking Oil to Polyhydroxyalkanoates and Carotenoids. Appl. Food Biotechnol. 2019, 6, 53–60. [Google Scholar] [CrossRef]
- Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883–5890. [Google Scholar] [CrossRef]
- Omar, F.N.; Rahman, N.A.; Hafid, H.S.; Mumtaz, T.; Yee, P.L.; Hassan, M.A. Utilization of kitchen waste for the production of green thermoplastic polyhydroxybutyrate (PHB) by Cupriavidus necator CCGUG 52238. Afr. J. Microbiol. Res. 2011, 5, 2873–2879. [Google Scholar] [CrossRef]
- Kovalcik, A.; Pernicova, I.; Obruca, S.; Szotkowski, M.; Enev, V.; Kalina, M.; Marova, I. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod. Process. 2020, 124, 1–10. [Google Scholar] [CrossRef]
- Sukruansuwan, V.; Napathorn, S.C. Use of agro industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A 04. Biotechnol. Biofuels 2018, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Kovalcika, A.; Kucera, D.; Matouskova, P.; Pernicova, I.; Obruca, S.; Kalina, M.; Enev, V.; Marova, I. Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila. J. Environ. Chem. Eng. 2018, 6, 3495–3501. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Petrika, S.; Oborna, J.; Prikryl, R.; Marova, I. Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process. Biochem. 2014, 49, 1409–1414. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Freitas, F.; Neves, L.A.; Alves, C.D.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Production of Medium-Chain Length Polyhydroxyalkanoates by Pseudomonas citronellolis Grown in Apple Pulp Waste. Appl. Food Biotechnol. 2019, 6, 71–82. [Google Scholar] [CrossRef]
- Mollea, C.; Marmo, L.; Bosco, F. Valorisation of cheese whey, a by-product from the dairy industry. In Food Industry; Mazzalupo, I., Ed.; Intech: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Povolo, S.; Toffano, P.; Basaglia, M.; Casella, S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour. Technol. 2010, 101, 7902–7907. [Google Scholar] [CrossRef] [PubMed]
- Berwig, K.H.; Baldasso, C.; Dettmer, A. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour. Technol. 2016, 218, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Yellore, V.; Desai, A. Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett. Appl. Microbiol. 1998, 26, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int. J. Polym. Sci. 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef]
- Sharma, P.K.; Fu, J.; Spicer, V.; Krokhin, O.V.; Cicek, N.; Sparling, R.; Levin, D.B. Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates. AMB Express 2016, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Chiu, S.; Nakas, J.; Nomura, C. Bioplastics from waste glycerol derived from biodiesel industry. J. Appl. Polym. Sci. 2013, 130, 1–30. [Google Scholar] [CrossRef]
- Możejko-Ciesielska, J.; Pokój, T. Exploring nutrient limitation for polyhydroxyalkanoates synthesis by newly isolated strains of Aeromonas sp. using biodiesel-derived glycerol as a substrate. Peer J. 2018, 6, 5838. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B.; Dubey, S.; Singh, P.; Shrivastava, A.; Mishra, S. Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry. Bioengineering 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Ray, S.; Patel, S.K.S.; Lee, J.K.; Kalia, V.C. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 2015, 78, 9–16. [Google Scholar] [CrossRef]
- Canadas, R.F.; Cavalheiro, J.M.B.T.; Guerreiro, J.D.T.; de Almeida, M.C.M.D.; Pollet, E.; da Silva, C.L.; da Fonseca, M.M.R.; Ferreira, F.C. Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int. J. Biol. Macromol. 2014, 71, 131–140. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Steinbüchel, S. Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J. Appl. Microbiol. 2010, 108, 214–225. [Google Scholar] [CrossRef]
- Pavan, F.A.; Junqueira, T.L.; Watanabe, M.D.B.; Bonomi, A.; Quines, L.K.; Schmidell, W.; de Aragao, G.M.F. Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem. Eng. J. 2019, 146, 97–104. [Google Scholar] [CrossRef]
- Qureshi, N.; Lolas, A.; Blaschek, H.P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 2001, 26, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, S.; Możejko-Ciesielska, J.; Pisutpaisal, N. Plant oils as promising substrates for polyhydroxyalkanoates production. J. Clean. Prod. 2015, 106, 408–421. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, X.R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018, 50, 94–100. [Google Scholar] [CrossRef]
- Ruiz, C.; Kenny, S.T.; Narancic, T.; Babu, R.; Connor, K.O. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 2019, 306, 9–15. [Google Scholar] [CrossRef]
- Follonier, S.; Goyder, M.S.; Silvestri, A.C.; Crelier, S.; Kalman, F.; Riesen, R.; Zinn, M. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int. J. Biol. Macromol. 2014, 71, 42–52. [Google Scholar] [CrossRef]
- Follonier, S.; Riesen, R.; Zinn, M. Pilot-scale production offunctionalized mcl-PHA from grape pomace supplemented with fatty acids. Chem. Biochem. Eng. Q. 2015, 29, 113–121. [Google Scholar] [CrossRef]
- Gowda, V.; Shivakumar, S. Agrowaste-based Polyhydroxyalkanoate (PHA) Production using Hydrolytic Potential of Bacillus thuringiensis IAM 12077. Braz. Arch. Biol. Technol. 2014, 57, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Pleissner, D.; Lam, W.C.; Han, W.; Lau, K.Y.; Cheung, L.C.; Lee, M.W.; Lei, H.M.; Lo, K.Y.; Ng, W.Y.; Sun, Z.; et al. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste. J. Biomed. Biotechnol. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sabapathy, P.C.; Devaraj, S.; Parthipan, A.; Kathirvel, P. Polyhydroxyalkanoate production from statistically optimized media using rice mill effluent as sustainable substrate with an analysis on the biopolymer’s degradation potential. Int. J. Biol. Macromol. 2019, 126, 977–986. [Google Scholar] [CrossRef]
- Amini, M.; Yousefi-Massumabad, H.; Younesi, H.; Abyar, H.; Bahramifar, N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. J. Environ. Chem. Eng. 2019, 8, 103588. [Google Scholar] [CrossRef]
- Al-Battashi, H.; Annamalai, N.; Al-Kindi, S.; Nair, N.S.; Al-Bahry, S.; Verma, J.P.; Sivakumar, N. Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari. J. Clean. Prod. 2019, 214, 236–247. [Google Scholar] [CrossRef]
- Birgham, C.J.; Riedel, S.L. The potential of polyhydroxyalkanoate production from food wastes (Review). Appl. Food Biotechnol. 2019, 6, 7–18. [Google Scholar] [CrossRef]
- Pais, J.; Farinha, I.; Freitas, F.; Serafim, L.S.; Martínez, V.; Martínez, J.C.; Arévalo-Rodríguez, M.; Prieto, M.A.; Reis, M.A.M. Improvement on the yield of polyhydroxyalkanoates production from cheese whey by a recombinant Escherichia coli strain using the proton suicide methodology. Enzym. Microb. Technol. 2014, 55, 151–158. [Google Scholar] [CrossRef]
- Saranya, V.; Shenbagarathai, R. Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Braz. J. Microbiol. 2011, 42, 1109–1118. [Google Scholar] [CrossRef]
- Obruca, S.; Snajdar, O.; Svoboda, Z.; Marova, I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J. Microbiol. Biotechnol. 2013, 29, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, N.; Sivakumar, N. Production of polyhydroxybutyrate from wheat bran hydrolysateusing Ralstonia eutropha through microbial fermentation. J. Biotechnol. 2016, 237, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.L.; Jahns, S.; Koeniga, S.; Bocka, M.C.E.; Brighamc, C.J.; Bader, J.; Stahl, U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 2015, 214, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Kamilah, H.; Tsuge, T.; Yang, T.; Sudesh, K. Waste cooking oil as substrate for biosynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product. Malays. J. Microbiol. 2013, 9, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Kim, J.H.; Kim, M.S.; Kim, J.; Hong, J.W.; Hong, J.G.; Kim, H.J.; Jeon, J.M.; Kim, S.H.; Ahn, J.; et al. Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioproc. Biosyst. Eng. 2018, 41, 229–235. [Google Scholar] [CrossRef]
- Thinagaran, L.; Sudesh, K. Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste Biomass Valorization 2017, 10, 709–720. [Google Scholar] [CrossRef]
- Borrero-de Acuña, J.M.; Aravena-Carrasco, C.; Carla Gutiérrez-Urrutia, I.; Duchens, D.; Poblete-Castro, I. Enhanced synthesis of medium-chain-length Poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem. 2019, 77, 23–30. [Google Scholar] [CrossRef]
- Sharma, P.K.; Munir, R.; Riffat de Kievit, T.; Levin, D.B. Synthesis of Polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can. J. Microbiol. 2017, 63, 1009–1024. [Google Scholar] [CrossRef] [Green Version]
- de Paula, F.C.; de Paula, C.B.C.; Gomez, J.G.C.; Steinbuchel, A.; Contiero, J. Poly(3 hydroxybutyrate-co-3-hydroxyvalerate) Production from Biodiesel By-Product and Propionic Acid by Mutant Strains of Pandoraea sp. Biotechnol. Prog. 2017, 33, 1077–1084. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M.R. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int. J. Biol. Macromol. 2020, 156, 691–703. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates. Appl. Microbiol. Biotechnol. 2007, 75, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lv, L.; Chen, J.C.; Chen, G.Q. Controlling microbial PHB synthesis via CRISPRi. Appl. Microbiol. Biotechnol. 2017, 101, 5861–5867. [Google Scholar] [CrossRef] [PubMed]
Manufacturer | Carbon Source | Year | References |
---|---|---|---|
Bio-on (Italy) | renewable sources or agricultural waste | 2007 | [8] |
Hydal (Chech) | waste cooking oil | 2012 | [9] |
Full-Cycle Bioplastic (USA) | food waste | 2015 | [10] |
Biocycle (Brazil) | sugar cane | 2000 | [11] |
Danimer Scientific ( USA) | canola oil | 2007 | [12] |
Tianjin Green Bioscience (China) | plants | 2013 | [13] |
Tianan Biologic Material Co., (China) | dextrose derived from corn or cassava delivered from China | 2004 | [14] |
Type of PHAs | Application | References |
---|---|---|
PHASCL | ||
Poly(3-hydroxybutyrate) | Blood components, tissue engineering, materials for medical devices, drug delivery system, food packaging | [19,32,33,34] |
Poly(4-hydroxybutyrate) | Agricultural nets | [35] |
Scl-copolymers | ||
Poly(3-hydroxybutyrate-4-hydroxybutyrate) | Matrices, microspheres or micro capsules | [36] |
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) | Drug carriers, e.g., in cure of chronic and implant osteomyelitis | [37] |
Poly(3-hydroxybutyrate-cco-3-hydroxyvalerate) with the addition of poly (L-lactic-co-glycolic acid) | Microspheres applied in medicine and tissue engineering | [38] |
Scl-mcl-copolymers | ||
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) | Scaffolds applied in medicine and tissue engineering | [39] |
Poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blends | Nerve tissue engineering | [40] |
Bacteria | Carbon Source | Cultivation Mode | Biomass (g L−1) | PHA Content (%) | Type of PHAs | References |
---|---|---|---|---|---|---|
Dairy industry wastes | ||||||
Bacillus megaterium NCIM 5472 | Cheese whey permeate | Batch | 11.0 | 75.5 | P(3HB) | [46] |
Bacillus megaterium CCM 2037 | Whey supernatant | Batch | 2.9 | 51.0 | P(3HB) | [47] |
Halomonas hydrophila | Cheese whey chemically hydrolysated | Batch | 8.5 | 38.3 | P(3HB) | [48] |
Caulobacter segnis DSM 29236 | Cheese whey | Fed-batch | 25.0 | 37.0 | P(3HB) | [49] |
Thermus thermophilus HB8 | Whey supernatant | Batch | 1.6 | 35.6 | P(3HB) | [50] |
Burkholderia sacchari LMF 101 | Cheese whey + glucose | Batch | 1.5 | 5.1 | P(3HB) | [51] |
Bacillus megaterium | Cheese whey | Batch | 3.6 | 86.6 | P(3HB-co-3HV) | [52] |
Haloferax mediterranei | Cheese whey | Batch | 7.5 | 53.0 | P(3HB-co-3HV) | [53] |
Pseudomonas aeruginosa MTCC | Cheese whey | Batch | 0.2 | 13.2 | P(3HB-co-3HV-co-3HHD-co-3HOD) | [54] |
Biodiesel industry derived byproducts | ||||||
Marine strain LAMA 685 | Waste glycerol | Batch | 0.3 | 53.6 | P(3HB) | [28] |
Pandoraea sp. MA03 | Waste glycerol | Batch | 4.3 | 49.0 | P(3HB) | [55] |
Burkholderia glumare MA13 | Waste glycerol | Batch | 3.9 | 41.4 | P(3HB) | [56] |
Cupriavidus necator | Waste glycerol from biodiesel industry | Batch | 6.8 | 72.0 | P(3HB-co-3HV) | [57] |
Cupriavidus necator IPT 027 | Crude glycerol | Batch | 2.4 | 71.1 | P(3HB-co-3HTP-co-15HPD-co-11HHD) | [58] |
Burkholderia cepacia IPT 438 | 1.9 | 67.4 | P(3HB-co-3HTD-co-11HHD) | |||
Pseudomonas putida KT2440 | Waste glycerol | Batch | 4.2 | 34.5 | P(3HTD-co-3HO-co-3HD-co-3H5DD-co-3HDD) | [59] |
Pseudomonas putida NRRL B-14875 | Waste glycerol | Fed-batch | 9.0 | 19.5 | P(3HHx-co-3HO-co-3HD-co-3HDD) | [60] |
Pseudomonas chlororaphis subsp. aurantiaca | Waste glycerol | Batch | 6.7 | 17.1 | P(3HHx-co-3HTD-co-3HO-3HD-co-3HDD) | [61] |
Enterobacter sp. ASC3 | Waste glycerol | Batch | 33.1 | 47.2 | P(3HO-co-3H5DD) | [62] |
Bacillus sp. ASC4 | 7.8 | 34.4 | ||||
Pseudomonas sp. ASC2 | 10.7 | 28.2 | ||||
Acinetobacter sp. ASC1 | 8.5 | 25.4 | ||||
Molasses | ||||||
Bacillus flexus AZU-A2 | Sugarcane molasses | Batch | 4.2 | 85.1 | P(3HB) | [63] |
Sugarcane molasses | Fed-batch | 7.1 | 84.3 | |||
Sugarcane molasses + acetic acid | Batch | 3.8 | 42.4 | |||
Bacillus megaterium BA-019 | Cane molasses | Batch | 8.8 | 61.6 | P(3HB) | [64] |
Fed-batch | 72.6 | 42.1 | ||||
Bacillus endophyticus | Sugarcane molasses | Batch | 3.7 | 59.5 | P(3HB) | [65] |
Cupriavidus necator | Vinasse and sugarcane molasses | Batch | 24.0 | 50.0 | P(3HB) | [66] |
Bacillus sp. BPPI-19 | Raw sugarcane molasses | Batch | 0.4 | 45.9 | P(3HB) | [67] |
Pre-treated sugarcane molasses | 4.5 | 44.7 | ||||
Bacillus subtilis RS1 | Sugarcane molasses | Batch | 2.4 | 41.7 | P(3HB) | [68] |
Bacillus subtilis | Sugarcane molasses | Batch | 1.5 | 16.7 | P(3HB) | [69] |
Clostridium beijerinckii ASU10 | Sugarcane molasses | Batch | 0.9 | 37.9 | P(3HB-co-3HO) | [70] |
Waste oils | ||||||
Burkholderia thailandensis E264 | Digestate of chicken manure combined with waste sunflower oil | Batch | 12.6 | 60.0 | P(3HB) | [71] |
Ralstonia sp. M91 | Crude fish oil | Batch | 5.3 | 52.0 | P(3HB) | [72] |
Halomonas neptunia | Waste frying oil | Batch | 2.9 | 23.1 | P(3HB) | [73] |
Halomonas halophila | 0.9 | 0.4 | ||||
Salinivibrio sp. M318 | Waste fish oil + glycerol | Batch | 10.0 | 51.7 | P(3HB) | [31] |
waste fish oil + glycerol + 1,4-butanediol | Fed-batch | 9.8 | 54.6 | P(3HB-co-4HB) | ||
Waste fish oil + glycerol + sodium heptanoate | Fed-batch | 11.2 | 53.0 | P(3HB-co-3HV) | ||
Bacillus thermoamylovorans | Waste cooking oil | Batch | 4.0 | 87.5 | P(3HB-co-3HV) | [74] |
Paracoccus sp. LL1 | Waste cooking oils | Batch | 3.24 | 30.8 | P(3HB-co-3HV) | [75] |
Other agro-food wastes | ||||||
Cupriavidus necator H16 | Oil from spent coffee grounds | Batch | 29.4 | 90.1 | P(3HB) | [76] |
Fed-batch | 55.4 | 89.1 | ||||
Cupriavidus necator CCGUG 52238 | Kitchen waste | Fed-batch | 14.4 | 84.5 | P(3HB) | [77] |
Cupriavidus necator | Grape winery waste | Batch | 8.3 | 76.8 | P(3HB) | [78] |
Cupriavidus necator | Banana peel | Batch | ND | 79.7 | P(3HB) | [27] |
Bacillus siamensis | ND | 77.6 | ||||
Staphylococcus aureus JH1 | ND | 70.0 | ||||
Cupriavidus necator A-04 | Pineapple core hydrolysate | Batch | 6.1 | 35.6 | P(3HB) | [79] |
Pineapple peel hydrolysate | 5.3 | 12.7 | ||||
Halomonas sp. SF2003 | Agro-industrial wastewaters | Batch | 5.7 | 33.0 | P(3HB) | [29] |
Halomonas halophila | Fermentable sugars from spent coffee grounds | Batch | 3.5 | 27.0 | P(3HB) | [80] |
Burkholderia cepacia | Hydrolysate of spent coffee grounds | Batch | 4.9 | 54.8 | P(3HB-co-3HV) | [81] |
Halogeometricum borinquense strain E3 | Cassava waste | Batch | 3.4 | 44.7 | P(3HB-co-3HV) | [30] |
Pseudomonas citronellolis | Apple pulp waste | Batch | 4.0 | 30.0 | P(3HD-co-3HHx-co-3HDD-co-3HTD-co-3HO) | [82] |
Bacteria | Carbon Source | Cultivation Mode | Biomass Concentration (g L−1) | PHA Content (%) | Type of PHAs | References |
---|---|---|---|---|---|---|
Cupriavidus necator OE1 | Waste frying oil | Batch | 8.6 | 87.9 | P(3HB) | [111] |
Escherichia coli | Sugar cane molasses | Fed-batch | 4.0 | 75.0 | P(3HB) | [110] |
Ralstonia eutropha NCIMB 11599 | Wheat bran hydrolysate | Batch | 20.0 | 62.5 | P(3HB) | [112] |
Escherichia coli P8-X8 | Cheese whey | Fed-batch | 33.1 | 38.7 | P(3HB) | [109] |
Escherichia coli CML3-1 | 28.2 | 21.7 | ||||
Cupriavidus necator mRePT | Hydrolyzed whey permeate | Batch | 8.0 | 30.0 | P(3HB) | [84] |
C. necator Re2058 (pCB113) | Waste frying oil and waste animal fat | Batch | 3.1 | 78.1 | P(3HB-co-3HHx) | [113] |
Cupriavidus necator PHB-4 | Palm oil-based waste cooking oil | Batch | 11.6 | 73.0 | P(3HB-co-3HHx) | [114] |
Ralstonia eutropha Re2133 | Coffee waste oil | Batch | 0.9 | 69.0 | P(3HB-co-3HHx) | [115] |
Cupriavidus necator Re2058/pCB113 | Sludge palm oil | Batch | 4.5 | 66.0 | P(3HB-co-3HHx) | [116] |
Sludge palm oil + tween 20 | 4.2 | 58.0 | ||||
Bacillus licheniformis M2-12 | Palm oil mill effluent | Batch | 11.6 | 87.6 | P(3HB-co-3HV) | [74] |
Pseudomonas putida | Waste vegetable oil | Batch | 5.0 | 38.3 | P(3HHx-co-3HO-co-3HD-co-3HDD) | [117] |
Pseudomonas chlororaphis PA23-63 | Biodiesel-derived waste free fatty acids | Batch | 4.3 | 26.1 | P(3HHx-co-3HO-co-3HD-co-3HDD-co-3HTD) | [118] |
Pseudomonas chlororaphis PA23-63 | Waste canola frying oil | Batch | 4.1 | 24.8 | P(3HHx-co-3HO-co-3HD-co-3HDD-co-3HTD | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniak, P.; Możejko-Ciesielska, J. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers 2021, 13, 1731. https://doi.org/10.3390/polym13111731
Marciniak P, Możejko-Ciesielska J. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers. 2021; 13(11):1731. https://doi.org/10.3390/polym13111731
Chicago/Turabian StyleMarciniak, Paulina, and Justyna Możejko-Ciesielska. 2021. "What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?" Polymers 13, no. 11: 1731. https://doi.org/10.3390/polym13111731
APA StyleMarciniak, P., & Możejko-Ciesielska, J. (2021). What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers, 13(11), 1731. https://doi.org/10.3390/polym13111731