Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadry, H.; Wadnap, S.; Xu, C.; Ahsan, F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 2019, 135, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics 2020, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Metral, B.; Bischoff, A.; Ley, C.; Ibrahim, A.; Allonas, X. Photochemical Study of a Three-Component Photocyclic Initiating System for Free Radical Photopolymerization: Implementing a Model for Digital Light Processing 3D Printing. ChemPhotoChem 2019, 3, 1109–1118. [Google Scholar] [CrossRef]
- Li, J.; Cui, Y.; Qin, K.; Yu, J.; Guo, C.; Yang, J.; Zhang, C.; Jiang, D.; Wang, X. Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing. Polym. Bull. 2015, 73, 571–585. [Google Scholar] [CrossRef]
- Cortés, A.; Sánchez-Romate, X.F.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S.G. Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology. Polymers 2020, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Dong, H.-H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Taormina, G.; Sciancalepore, C.; Messori, M.; Bondioli, F. 3D printing processes for photocurable polymeric materials: Technologies, materials, and future trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Stampfl, J.; Wöß, A.; Seidler, S.; Fouad, H.; Pisaipan, A.; Schwager, F.; Liska, R. Water Soluble, Photocurable Resins for Rapid Prototyping Applications. Macromol. Symp. 2004, 217, 99–108. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Chang, W.-C.; Wei, L.-J.; Huang, Y.-H.; Chen, C.-H.; Shih, C.-T.; Chen, Y.-W.; Shen, Y.-F. 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 2017, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, D.; Zheng, Y.; Zhao, L.; Xu, T.; Guo, Z.; Hussain, M.I.; Zeng, J.; Lou, L.; Sun, Y.; et al. A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing. Biofabrication 2020, 12, 035015. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.; Cho, S. Comparative Studies on Polyurethane Composites Filled with Polyaniline and Graphene for DLP-Type 3D Printing. Polymers 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.M.; Jeong, B.Y.; Yoo, C.S.; Park, D.J.; Bae, J.K.; Chun, J.H. Synthesis and Characterization of Waterborne Polyurethane Using Nanoclay. J. Adhes. Interface 2007, 8, 4. [Google Scholar]
- Lee, S.H.; Cheon, J.M.; Jeong, B.Y.; Kim, H.-D.; Chun, J.H. Synthesis and Properties of Waterborne Polyurethane Acrylate Adhesive. Adhes. Interface 2015, 16, 156–161. [Google Scholar] [CrossRef][Green Version]
- Thakur, S.; Karak, N. Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog. Org. Coat. 2013, 76, 157–164. [Google Scholar] [CrossRef]
- Bhattarai, S.; Lee, S.; Lee, D.; Lee, Y. Effect of Molecular Weight of Poly(tetramethylene glycol) on Waterborne Polyurethane Dispersion Coating Gloss. Bull. Korean Chem. Soc. 2019, 40, 1046–1049. [Google Scholar] [CrossRef]
- Bernard, C.; Goodwin, D.G.; Gu, X.; Celina, M.; Nyden, M.; Jacobs, D.; Sung, L.; Nguyen, T. Graphene oxide/waterborne polyurethane nanocoatings: Effects of graphene oxide content on performance properties. J. Coat. Technol. Res. 2020, 17, 255–269. [Google Scholar] [CrossRef] [PubMed]
MW | Series | Soft Segment | Ionic Group | TEA | |||
---|---|---|---|---|---|---|---|
PCL | H12MDI | DMBA | H12MDI | ||||
#1 | 3000 | WPU-3 | 0.0293 | 0.0393 | 0.0101 | 0.0101 | 0.0101 |
#2 | 6000 | WPU-6 | 0.0310 | 0.0360 | 0.0101 | 0.0101 | 0.0101 |
#3 | 10,000 | WPU-10 | 0.0316 | 0.0346 | 0.0101 | 0.0101 | 0.0101 |
#4 | 30,000 | WPU-30 | 0.0323 | 0.0333 | 0.0101 | 0.0101 | 0.0101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Won, J.C.; Lim, W.B.; Min, J.G.; Lee, J.H.; Kwon, C.R.; Lee, G.H.; Huh, P. Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers 2021, 13, 44. https://doi.org/10.3390/polym13010044
Bae J-H, Won JC, Lim WB, Min JG, Lee JH, Kwon CR, Lee GH, Huh P. Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers. 2021; 13(1):44. https://doi.org/10.3390/polym13010044
Chicago/Turabian StyleBae, Ji-Hong, Jong Chan Won, Won Bin Lim, Jin Gyu Min, Ju Hong Lee, Chung Ryeol Kwon, Gyu Hyeok Lee, and Pilho Huh. 2021. "Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane" Polymers 13, no. 1: 44. https://doi.org/10.3390/polym13010044
APA StyleBae, J.-H., Won, J. C., Lim, W. B., Min, J. G., Lee, J. H., Kwon, C. R., Lee, G. H., & Huh, P. (2021). Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers, 13(1), 44. https://doi.org/10.3390/polym13010044