Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam
Abstract
1. Introduction
2. Model Formulation
3. Descriptions of the Six Models
- , and represents the traditional Lord–Shulman model with one relaxation time [54].
- , represents the Lord–Shulman model based on the classical Caputo fractional definition (Lord–Shulman (C-C)).
- represents the Lord–Shulman model based on the Caputo–Fabrizio fractional definition (Lord–Shulman (F-C)).
- , represents the traditional Tzou dual-phase-lag (DPL) model.
- , represents the Tzou dual-phase-lag (DPL) model based on the classical Caputo fractional definition (Tzou (C-C)) [42].
- represents the Tzou dual-phase-lag (DPL) model based on the Caputo–Fabrizio fractional definition (Tzou (F-C)).
4. Numerical Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duwel, A.; Candler, R.N.; Kenny, T.W.; Varghese, M. Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 2006, 15, 1437–1445. [Google Scholar] [CrossRef]
- Guo, F.; Rogerson, G. Thermoelastic coupling effect on a micro-machined beam resonator. Mech. Res. Commun. 2003, 30, 513–518. [Google Scholar] [CrossRef]
- Harris, C.M.; Piersol, A.G. Harris’ Shock and Vibration Handbook; McGraw-Hill: New York, NY, USA, 2002; Volume 5. [Google Scholar]
- Koyama, T.; Bindel, D.S.; He, W.; Quévy, E.P.; Govindjee, S.; Demmel, J.W.; Howe, R.T. Simulation tools for damping in high frequency resonators. In Proceedings of the IEEE SENSORS, Irvine, CA, USA, 30 October–3 November 2005; p. 4. [Google Scholar]
- Zener, C. Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 1937, 52, 230. [Google Scholar] [CrossRef]
- Zener, C. Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 1938, 53, 90. [Google Scholar] [CrossRef]
- Zener, C.; Otis, W.; Nuckolls, R. Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 1938, 53, 100. [Google Scholar] [CrossRef]
- Lifshitz, R.; Roukes, M.L. Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 2000, 61, 5600. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, D.; Soh, A.K. Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 2006, 43, 3213–3229. [Google Scholar] [CrossRef]
- Sharma, J.; Sharma, R. Damping in micro-scale generalized thermoelastic circular plate resonators. Ultrasonics 2011, 51, 352–358. [Google Scholar] [CrossRef]
- Tzou, D. On the thermal shock wave induced by a moving heat source. J. Heat Transf. 1989, 111, 232–238. [Google Scholar] [CrossRef]
- Tzou, D.; Puri, P. Macro-to microscale heat transfer: The lagging behavior. Appl. Mecha. Rev. 1997, 50, B82. [Google Scholar] [CrossRef]
- Xu, M.; Guo, J.; Wang, L.; Cheng, L. Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction. Int. J. Therm. Sci. 2011, 50, 825–830. [Google Scholar] [CrossRef]
- Al-Huniti, N.S.; Al-Nimr, M. Thermoelastic behavior of a composite slab under a rapid dual-phase-lag heating. J. Therm. Stresses 2004, 27, 607–623. [Google Scholar] [CrossRef]
- Ho, J.-R.; Kuo, C.-P.; Jiaung, W.-S. Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method. Int. J. Heat Mass Transf. 2003, 46, 55–69. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Tsai, T.-W. Ultra-fast pulse-laser heating on a two-layered semi-infinite material with interfacial contact conductance. Int. Commun. Heat Mass Transf. 2007, 34, 45–51. [Google Scholar] [CrossRef]
- Liu, K.-C. Numerical analysis of dual-phase-lag heat transfer in a layered cylinder with nonlinear interface boundary conditions. Comput. Phys. Commun. 2007, 177, 307–314. [Google Scholar] [CrossRef]
- Ramadan, K. Semi-analytical solutions for the dual phase lag heat conduction in multilayered media. Int. J. Therm. Sci. 2009, 48, 14–25. [Google Scholar] [CrossRef]
- Alghamdi, N. Dual-Phase-Lagging Thermoelastic Damping Vibration in Micro-Nano Scale Beam Resonators with Voids. Int. J. Multidiscip. Curr. Res. 2017, 5, 71–78. [Google Scholar]
- Alghamdi, N.A.; Youssef, H.M. Dual-phase-lagging thermoelastic damping in-extensional vibration of rotating nano-ring. Microsyst. Technol. 2017, 23, 4333–4343. [Google Scholar] [CrossRef]
- Guo, F.; Song, J.; Wang, G.; Zhou, Y. Analysis of thermoelastic dissipation in circular micro-plate resonators using the generalized thermoelasticity theory of dual-phase-lagging model. J. Sound Vib. 2014, 333, 2465–2474. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Rogerson, G. Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. Int. J. Eng. Sci. 2012, 60, 59–65. [Google Scholar] [CrossRef]
- Dai, H.; Zheng, Z.; Wang, W. A new fractional wavelet transform. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 19–36. [Google Scholar] [CrossRef]
- Zheng, Z.; Dai, H. A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis. Nonlinear Dyn. 2018, 91, 1075–1084. [Google Scholar] [CrossRef]
- Dai, H.; Zheng, Z.; Ma, H. An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansion. Mech. Syst. Signal Process. 2019, 115, 1–13. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer: Cham, Switzerland, 2015; Volume 219. [Google Scholar]
- Colinas-Armijo, N.; Di Paola, M.; Di Matteo, A. Fractional viscoelastic behaviour under stochastic temperature process. Probabilistic Eng. Mech. 2018, 54, 37–43. [Google Scholar] [CrossRef]
- Xu, J. A PDEM based new methodology for stochastic dynamic stability control of nonlinear structures with fractional-type viscoelastic dampers. J. Sound Vib. 2016, 362, 16–38. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Dang, C. A marginal fractional moments based strategy for points selection in seismic response analysis of nonlinear structures with uncertain parameters. J. Sound Vib. 2017, 387, 226–238. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef]
- Atangana, A. On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl. Math. Comput. 2016, 273, 948–956. [Google Scholar] [CrossRef]
- Youssef, H.M. Theory of fractional order generalized thermoelasticity. J. Heat Transf. 2010, 132, 061301–061308. [Google Scholar] [CrossRef]
- Youssef, H.M. Theory of generalized thermoelasticity with fractional order strain. J. Vib. Control 2016, 22, 3840–3857. [Google Scholar] [CrossRef]
- Sherief, H.H.; El-Sayed, A.; El-Latief, A.A. Fractional order theory of thermoelasticity. Int. J. Solids Struct. 2010, 47, 269–275. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl 2015, 1, 1–13. [Google Scholar]
- Shaker, F.J. Effect of axial load on mode shapes and frequencies of beams. Natl. Aeronaut. Space Adm. 1975, 21, 1–32. [Google Scholar]
- Verbridge, S.S.; Shapiro, D.F.; Craighead, H.G.; Parpia, J.M. Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 2007, 7, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Tzou, D.Y. Macro-to Microscale Heat Transfer: The Lagging Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Majchrzak, E.; Mochnacki, B. Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 2018, 133, 240–251. [Google Scholar] [CrossRef]
- Zhou, H.; Li, P.; Zuo, W.; Fang, Y. Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl. Math. Model. 2020, 79, 31–51. [Google Scholar] [CrossRef]
- Kumar, H.; Mukhopadhyay, S. Analysis of the quality factor of micro-beam resonators based on heat conduction model with a single delay term. J. Therm. Stresses 2019, 42, 929–942. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon Yverdon-les-Bains, Switzerland, 1993; Volume 1. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Singapore: Singapore, 2000; Volume 35. [Google Scholar]
- Saad, K.M. New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method. Alex. Eng. J. 2019, 59, 1909–1917. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. The effect of fractional thermoelasticity on two-dimensional problems in spherical regions under axisymmetric distributions. J. Therm. Stresses 2020, 43, 440–455. [Google Scholar] [CrossRef]
- Grover, D.; Seth, R. Viscothermoelastic micro-scale beam resonators based on dual-phase lagging model. Microsyst. Technol. 2018, 24, 1667–1672. [Google Scholar] [CrossRef]
- Sun, Y.; Saka, M. Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 2010, 329, 328–337. [Google Scholar] [CrossRef]
- Tzou, D. Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat. Trans. 1995, 9, 686–693. [Google Scholar]
- Youssef, H. Theory of two-temperature-generalized thermoelasticity. Ima J. Appl. Math. 2006, 71, 383–390. [Google Scholar]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 2019, 7, 407. [Google Scholar]
- Gross, D.; Seelig, T. Fracture Mechanics: With an Introduction to Micromechanics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Li, P.; Fang, Y.; Hu, R. Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 2012, 331, 721–733. [Google Scholar] [CrossRef]
- Rahimi, Z.; Sumelka, W.; Ahmadi, S.R.; Baleanu, D. Study and control of thermoelastic damping of in-plane vibration of the functionally graded nano-plate. J. Vib. Control 2019, 25, 2850–2862. [Google Scholar] [CrossRef]
- Hoang, C.M. Thermoelastic damping depending on vibration modes of nano beam resonator. Commun. Phys. 2015, 25, 317. [Google Scholar] [CrossRef]
- Youssef, H.M.; Alghamdi, N. Thermoelastic damping in nanomechanical resonators based on two-temperature generalized thermoelasticity theory. J. Therm. Stresses 2015, 38, 1345–1359. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, H.M.; El-Bary, A.A.; Al-Lehaibi, E.A.N. Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam. Polymers 2021, 13, 27. https://doi.org/10.3390/polym13010027
Youssef HM, El-Bary AA, Al-Lehaibi EAN. Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam. Polymers. 2021; 13(1):27. https://doi.org/10.3390/polym13010027
Chicago/Turabian StyleYoussef, Hamdy M., Alaa A. El-Bary, and Eman A. N. Al-Lehaibi. 2021. "Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam" Polymers 13, no. 1: 27. https://doi.org/10.3390/polym13010027
APA StyleYoussef, H. M., El-Bary, A. A., & Al-Lehaibi, E. A. N. (2021). Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam. Polymers, 13(1), 27. https://doi.org/10.3390/polym13010027